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Abstract

The initial orbit determination of a space object is one of the most fascinating problems
to solve for a space debris scientist which is essential for catalogue build-up. Typically, more
than one series of observations is used, as a single series of observations is not sufficient
to achieve the required precision. The challenge is to find which tracklets belong to the
same object and hence, together form a large pool of observations. It also becomes more
demanding when relying solely on optical measurements to solve this problem, which is the
case for space objects in higher altitudes due to a lack of measurements from any other
source.

The existing methods for tracklet correlation and initial orbit determination don’t include
the effect of perturbations on the orbit. The main contribution of this work is a perturbed
initial orbit determination method which facilitates the association of two series of optical
observations. Since the proposed algorithm is mainly for the geostationary orbital region, the
perturbations only due to geopotential terms, third body forces of the Sun, Moon, and solar
radiation pressure are considered. The algorithm takes inspiration from the existing optim-
ized boundary value initial orbit determination method (OBVIOD) which uses Mahalanobis
distance as the loss function. An initial hypothesis is made using the optical measurements
from two series of observations and a pair of ranges. A shooting technique is used where the
initial orbital state is computed by propagating from the epoch of the first tracklet to the
epoch of the second. The proposed mechanism uses a numerical propagator to add the effect
of perturbations. Furthermore, the robustness and accuracy of two different root-finding
techniques is analysed for use in the Shooting method.

The proposed algorithm is tested using simulated observations which belong to objects of
varying area-to-mass ratios and are separated by multiple revolutions. The proposed tech-
nqiue is able to successfully correlate various pairs of tracklets even if they belong to objects
in highly perturbed orbits and performs much better than its unperturbed counterpart.
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ṙ First derivative of r

−̇→r Geocentric velocity vector

µ or µ⊕ Geocentric gravitational constant

µ� Heliocentric gravitational constant

ρ Topocentric range

ρ2diff Difference in computed and OBVIOD ρ2 values

θ Transfer angle

a Semimajor axis

amax Maximum semimajor axis

amin Minimum semimajor axis

e Eccentricity

E� Heliocentric energy

E⊕ Geocentric energy

RSI Radius of sphere of influence of earth

−→r Geocentric position vector

−→r s Station position vector

−→u Line of sight vector from station to the observed object

−→v s Station velocity vector

r Geocentric distance

- XVII-





1 Introduction

Humankind’s exploration of space started in 1957 with the launch of the first satellite
Sputnik-1. The satellite launches following this event have helped improve life on our planet
in several ways like weather forecasting, disaster management, GPS navigation to name a
few. However, one side-effect of the increase in satellite population has been ‘space debris’
or ‘orbital debris’(Musci et al., 2005; Vallado, 2007).

‘Orbital debris is defined as any man-made object which is non-functional with no reas-
onable expectation of assuming or resuming its intended function, or any other function
for which it is or can be expected to be authorized, including fragments and parts thereof.’
(Schildknecht, 2007).

The space debris population is continuously increasing. Several mission-related objects
like payload shrouds, instrument covers, solid rocket motors have led to its increase. After
the end of life of a mission, the disintegration of thermal blankets have contributed to the
rise in debris numbers. In almost 60 years of space activities, more than 5,200 launches have
resulted in around 42,000 tracked objects in orbit, of which only about 1,200 are intact and
operational (ESA, 2020). This growing population of space debris increases the threat to
operational spacecraft and manned missions.

To mitigate this threat, the monitoring of the space environment and cataloguing of the
debris is very important. This is done using optical surveys and radar observations. In
the scope of this thesis we focus on optical surveys and challenges presented by the optical
observations. Optical surveys result in angles-only observations of objects on very short arcs.
These observations are sparse and cover a very small part of the orbit, hence the initial orbit
determination becomes challenging. The orbits of the uncontrolled space objects evolve over
time due to factors like their area-to-mass ratio, perturbations acting on them. The area-to-
mass ratio (AMR) is a parameter to categorise space debris objects. Compact, satellite-like
objects have AMR values of 1 m2/kg and less (low area-to-mass ratio objects, LAMR);
large and/or very light, foil-like objects have AMR values of more than 1 m2/kg (high area-
to-mass ratio objects, HAMR). The introduction extends to briefly describe the problem
of space debris, the survey techniques used to observe the space objects, the observations
resulting from surveys, and finally the overview of the methods used for the initial orbit
determination from such observations.

In the three-year period between 2015 and 2018, 873 small satellites were launched. The
estimates are that the next decade will see nearly 10,000 small satellites launched. Moreover,
the satellite constellations will increase the space traffic in the next few years and operations
will become harder. One example is Starlink constellation from SpaceX, with a 4425-elements
constellation dominates in terms of number of satellites in constellations between the period
2019-2024 (Curzi et al., 2020). The number of space objects is expected to increase soon,
to huge numbers especially if the current launch trends remain unchanged. The goal of this
thesis is, therefore:
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To identify an algorithm capable of addressing the problem of initial orbit determination
of space debris in the GEO region with the addition of perturbations, in order to catalog
objects in highly-perturbed orbits.

1.1 Space Debris

The orbits around Earth can be classified into different types based on their altitudes, usually
called the Low Earth Orbit (LEO), the Medium Earth Orbit (MEO), and the Geostationary
Orbit (GEO). The LEO regime ranges from about 160 km to 2,000 km. LEO’s proximity
to Earth makes it useful for several reasons. It is most commonly used for satellite imaging,
as being near the surface allows it to take images of higher resolution. However, these
orbits are not very suitable for telecommunication due to their high orbiting velocities. A
geostationary orbit is a circular orbit in the equatorial plane at an altitude of 35,786 km, and
an orbital period equal to 23 hours 56 minutes and 4 seconds. The orbital period matches
with the rotation of the earth and the satellite appears stationary over one place on the
Earth’s equator. This is the reason due to which these satellites are mainly used for:

1. Telecommunications: TV broadcasting, voice and internet

2. Earth observation purposes (remote sensing)

3. Meteorology

4. Science

The Medium Earth Orbit is between the LEO and GEO altitudes. These orbits are mainly
used for navigation purposes. Many of these satellites are launched into different orbits to
cover large parts of the world. In addition, there are other categories of orbits such as Highly
Eccentric Earth Orbit (HEO) with apogee heights higher than those of GEO. Some of the
orbits are defined as MEO-GEO crossing orbits, LEO-MEO crossing orbits, GEO Transfer
orbits, Navigation Satellite orbits. The orbit categories are shown more in detail in Table
1.1 (ESA, 2020).

The number of debris objects, their combined mass, and the total area they take up has
been steadily increasing. This is further fuelled by a large number of in-orbit break-ups of
spacecraft and rocket stages. The total area that space debris takes up is important, as it is
directly related to how many collisions we expect in the future. The change in object area
since the beginning of the launches is shown in Fig. 1.1. According to the present trends,
collisions between debris and working satellites are predicted to overtake explosions as the
dominant source of debris (ESA, 2020). The effect whereby the generation of space debris
via collisions and explosions in orbit could lead to an exponential increase in the amount of
artificial objects in space, in a chain reaction which would render spaceflight too hazardous
to conduct, was first postulated by Donald Kessler in 1978 (Kessler and Cour-Palais, 1978).
Space debris first of all is a risk for the space missions. The debris pieces are mainly a
threat due to their high relative velocity with respect to the other objects in orbit. In LEO
objects move with velocities of 7-8 km/s (about 27,000 km/h) with respect to an Earth fixed
frame. Consequently, the released energy during a collision is remarkably high. On average,
objects in LEO have relative velocities of about 10 km/s, and in case of a head-on collision
the relative velocities may even reach 16 km/s. Impacts of even small particles may cause
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Table 1.1 – Ranges defining each orbital class with semimajor axis, eccentricity, inclination,
perigee height and apogee height. The units are km and degrees (ESA, 2020).

large damage with potentially catastrophic consequences. The fact that such impacts really
take place is confirmed by the detailed inspections of the shuttle after each mission. On
average, one window has to be replaced after each flight due to impacts of small particles
(Schildknecht, 2007).

Two major fragmentation events in GEO and HEO were observed in 2018. Based on
measurements of the International Scientific Optical Network (ISON) and the Roscosmos
Automated Warning System on Hazardous Situations in Outer Space (ASPOS OKP) frag-
mentation of the Titan 3C Transtage 1969-013B, SSN 3692 on February 28, 2018, was iden-
tified. More than 100 objects detected by optical instruments operated by ASPOS OKP, the
Astronomical Scientific Center ISON, ISTP RAS, and other Russian scientific and research
organizations could be identified as fragmentation debris related to this event. Another
massive fragmentation event in HEO related to the Atlas Centaur upper stage 2014-055B,
SSN 40209, which occurred on August 30, was identified based on the same data sources.
Many of the fragments of this event are crossing the operational GEO region. In March
and April 2019 two additional breakup events of Atlas Centaur upper stages took place
(Schildknecht et al., 2019).

Out of the thousands of objects tracked in orbit using radars and other methods, anyone
could damage or destroy a functioning satellite if a collision were to occur. In 2018, ESA-
operated satellites had to conduct 27 debris avoidance manoeuvres, a number that is growing
year by year. The particles with size larger than a few centimeters are usually generated
by in-orbit explosions, which can be triggered by several mechanisms such as 1) failures of
batteries, 2) ignition of residual fuel, 3) burst of a pressurized vessel, or by 4) intentional
ignition of a self-destruction mechanism. Collisions of objects with one another could also
lead to an increase in the space debris population. Objects in the space environment can be
categorized as identified and unidentified objects. The identified objects are the ones that
can be traced back to the launch event such as upper stages, payload mission-related objects
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Fig. 1.1 – The evolution of the object area in geocentric orbits by orbit class (ESOC, 2020).

including optical instruments, rocket fragmentation debris. The unidentified objects are the
ones for which this tracing is impossible. The evolution of the number of space objects since
the beginning of the space age is shown in Fig. 1.2 (ESA, 2020), the graph represents the
data corresponding to the object types.

When observing the temporal evolution of a debris cloud, e.g. shortly after an explosion,
one can discover that the fragments are dispersed quickly over a large volume in space.
Fig. 1.3 shows a simulation of an explosion in LEO. The simulation ejected the fragments
according to the expected velocity and mass distributions uniformly into all directions. The
laws of celestial mechanics tell, however, that the cloud is not immediately expanding into a
spherical shell, but that the fragments in a first stage are distributed along the orbit of the
parent body. Fig. 1.3 shows the cigar-shaped distribution of the fragments immediately after
the explosion on the left side. After several hours the debris cloud has expanded into a toric
region along the parent orbit (Fig. 1.3 middle). The figure on the right shows the situation
3 years after the event. The fragments are now dispersed in an almost closed shell around
the globe. The dispersion is caused by the perturbing forces of the gravity field (mainly
due to the equatorial bulge), which force the orbital planes to precess, but with a slightly
different rate for the original slightly different orbits of the fragments. This mechanism is
responsible for the fact that each debris cloud in LEO is sooner or later causing a global
‘pollution’ roughly at the height of the original orbit.

The testing or use of destructive anti-satellite (ASAT) weapons that physically collide
with satellites at high speed is also a source of debris. In 2007, the intentional collision
of an anti-satellite (ASAT) weapon with the Chinese Fengyun 1C spacecraft showed that
collisions between resident space objects can be very damaging to the environment. The
Fengyun breakup produced more than 2,500 trackable debris fragments and increased the
size of the U.S. Space Surveillance Network (SSN) catalog by over 25% (Stansbery and
Johnson, 2007). The following year, the U.S. did an ASAT test to destroy one of its spy
satellites called USA 193 creating 174 pieces of trackable debris, plus non-trackable shards.
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Fig. 1.2 – The evolution of the number of objects in all orbits (ESOC, 2020).

Fig. 1.3 – Simulated explosion in LEO; immediately after the explosion (left), after some hours
(middle), and after 3 years (right) Schildknecht, 2007.

- 5-



1 Introduction

The bulk of that debris re-entered the atmosphere within days, though in certain cases it
took months (Porras, 2018).

The time for which the debris pieces remain in the orbit depends on their orbit altitudes.
In low altitude orbits, there is a natural ‘sink’ for space debris: the atmosphere. All objects
in orbits below about 1000 km of altitude constantly collide with residual air molecules
and atoms. As a consequence of this so-called air drag the object is decelerated and loses
kinetic energy, which eventually leads to the decay of the orbit. During the re-entry into the
atmosphere the drag from the denser air layers heats the object by friction and it eventually,
with the exception of very massive objects, burns up. The deceleration rate depends on
the density of the air and thus strongly on the altitude. An additional important factor is
the area-to-mass ratio of the object: ‘lightweight’ pieces with a comparable large area are
subject to a stronger deceleration than ‘massive’, compact objects.

At altitudes up to 600 km, objects without an active propulsion system will re-enter the
atmosphere within a few months up to several years. For objects starting at altitudes of
600–800 km, it takes several decades before they burn up in the atmosphere. Objects in
orbits at altitudes above 800 km remain in orbit for several hundred years. Above altitudes
of a few 1,000 km, in particular in GEO, orbits have an ‘indefinite’ lifetime and objects will
stay there ‘forever’.

The Inter-Agency Space Debris Coordination Committee recommends a minimum altitude
increase (in km) which is given as:

∆H = 235 + 1000 · CR · A/m (1.1)

where CR is the solar radiation pressure coefficient (usually with a value between 1 and 2),
A is the average cross-sectional area in square metres and, m is the mass of the satellite in kg.
Given these guidelines and recommendations one would expect that the geostationary ring
is a well protected and unlittered space (Jehn et al., 2007). However, not many operators
complied with these guidelines at the beginning of the last decade. These trends have
changed in the current decade. Between 85% and 100% of all payloads reaching end-of-life
during the current decade in the GEO protected region attempt to comply with the space
debris mitigation measures, see Fig. 1.4. Between 60% and 90% do so successfully. The
compliance trend is asymptotically increasing (ESOC, 2020).

1.2 Optical observations of space debris

Objects in lower altitudes such as in the Low Earth Orbit (LEO) are monitored by radar
telescopes which are less dependent on weather and time conditions. Optical telescopes
are used to observe space debris objects in higher altitudes. The US Strategic Command
(USSTRATCOM), a military entity of the USA, maintains a catalog of thousands of known
‘large’ objects. Sensors of the so-called ‘space surveillance network’ (SSN) continuously
collect measurements, which are then combined with earlier data to produce orbits. The
SSN consists of a global network of radar stations and a series of optical telescopes.

Space debris can be detected with optical telescopes when the objects are illuminated by
the Sun while the sky background is dark. For the LEO region this is only the case during
1–2 hours after sunset and before sunrise. Most optical telescopes have a narrow field of
view of the order of 1°or less. Their big advantage over radars, however, resides in their
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Fig. 1.4 – Trend of adherence to disposal guideline in GEO by IADC (ESOC, 2020).

higher sensitivity in terms of object size at large distances: while the radar sensitivity falls
off proportional to the distance to the fourth, the sensitivity of optical instruments is only
reduced proportional to the distance squared. This is the main reason why optical telescopes
are primarily used to investigate the debris environment at high altitudes (Schildknecht,
2007).

1.2.1 The telescope set-up

The principle setup of an optical sensor system consists of a telescope and an attached
detector. The detection is either performed by an integrated photon counting array (e.g.
a charge-coupled device sensor) or an active-pixel sensor (e.g. using complementary metal-
oxide-semiconductors) (Schildknecht, 2007). The aperture and focal length of the telescope
define the field of view and the angular resolution which can be achieved by the detector
pixels. Additionally, the pixel size, focal ratio, and the other parameters have a direct impact
on the telescope performance, namely the signal-to-noise ratio and accuracy, and are all
connected to each other. The overall design of a sensor is thus a multivariate optimization
process and returns different results depending on the planned observation scenario and
strategy. Efficient optical surveys require dedicated telescopes with the following features:

• large aperture,

• large field of view (FOV), and

• sensitive detector.
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An optimized space debris observation system would need a very fast optical system with
a large FOV in order to allow for reasonably sized CCD sensors (mosaics) in the focal
plane. The difficulties in manufacturing fast optics could be reduced by allowing for some
degradation in the imaging quality. The next section will address some important technical
aspects of the surveys.

The Zimmerwald Observatory is affiliated with the Astronomical Institute of the University
of Bern. It performs the optical observations for Space Debris, Asteroids and Comets. It is
located 10 km South of Bern, Switzerland. Currently optical observations are performed with
the 1 m Laser and Astrometric Telescope, ZIMLAT (Fig. 1.5 and Fig. 1.6), the 0.2 m Small
Aperture Robotic Telescope, ZimSMART (Fig. 1.7), the Zimmerwald Multiple Applications
Instrument, ZimMAIN, and Zimmerwald Twin Wide-field Instrument, ZimTWIN. In the
following subsections, a brief introduction to ZIMLAT and ZimSMART is given. If the
reader wants to know about the ZimMAIN and ZimTWIN please refer to (Cordelli et al.,
2019).

Both ZIMLAT and ZimSMART are equipped with state-of-the-art CCD cameras with low
readout-noise and high quantum efficiency. While ZIMLAT is used for follow-up observations
of small-size space debris objects to keep their orbital information updated and also to
determine their physical characteristics, the main objective of ZimSMART is to perform
systematic surveys of high-altitude orbit regions, in particular of the geostationary ring
(GEO). The goal of these observations is to build-up and maintain orbit catalogues of objects
in high-altitude orbits, including a catalogue of small-size debris with high area-to-mass
ratios. Orbits from these catalogues are used to routinely track and characterize space
debris with ZIMLAT.

ZIMLAT

ZIMLAT (installed in 1997) has field of view (FoV) as 26 x 26 arcmin, which is used either
for laser ranging to satellites (SLR) or for optical observation of positions and magnitudes
of near-Earth objects. These objects were either discovered by the ESA space debris tele-
scope in Tenerife, Spain or by observatories of our international partners, in particular the
International Scientific Optical Network (ISON) led by the Keldysh Institute of Applied
Mathematics (KIAM). The resulting positions and orbital elements are shared among the
partners. ZIMLAT observations play a key role in the maintenance of orbits of objects with
high area-to-mass ratios (Herzog et al., 2013). This telescope is operated on a 24/7 basis
and different research projects make use of it. It hosts both the satellite laser ranging (SLR)
system and the astrometric equipment. The equipment of the SLR system is in the Coudé
focus of the telescope; while the astrometric equipment, as can be seen in Fig. 1.6, is hosted
in the Nasmyth platform that contains both CMOS and CCD cameras. These different cam-
era types are employed in different projects, for more information consult (Cordelli et al.,
2019). The specifications of ZIMLAT are as follows:

• 4 focal stations: f = 1.2m, 2 x 4m, 8m,

• 2k x 2k CCD

• 3k x 3k CCD

• Coudé path for Laser
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• Fast mount: 30°/s, 20°/s2

Fig. 1.5 – ZIMLAT (Herzog et al., 2013).

Fig. 1.6 – The sketch of ZIMLAT telescope (Cordelli et al., 2019).

ZimSMART

The second oldest telescope is the Zimmerwald Small Aperture Robotic Telescope (ZimS-
MART, visible in Fig. 1.7). It has 20 cm aperture with a resulting 3.6 x 3.6 degree FoV.
Due to the wide FoV, the main purpose of this telescope is the discovery of space debris in
the GEO region. One of its main achievements is the buildup and the maintenance of the
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GEO space debris AIUB internal catalog. The cut off at 16 magnitude (1 meter-size object
at GEO altitude) is due to the aperture size of the telescope and the standard exposure time
used for the actual survey campaign, which is only 8 seconds. As for ZIMLAT, also ZimS-
MART is acquiring regularly GNSS satellites which are used to estimate the telescope time
bias and monitor the astrometric accuracy of the extracted series of observations. During
the acquisition the telescope is looking in a direction fixed with respect to the Earth. The
survey fields are chosen for a fixed right ascension and declination stripes separated by 3.5°.
For each field there are 5 images taken with an exposure time of 8 seconds. The images are
analysed with an automated procedure to find any moving object. Astrometric positions
and apparent magnitudes are determined for each detection of a moving object.

ZimSMART was used to acquire first observations of an ejected cooler cover. It belonged to
the EUMETSAT’s weather satellite MSG 2 which was launched on December 22, 2005. Just
prior to reaching operational altitude the cooler cover was ejected in a special manoeuvre,
several hundred kilometres away from the geostationary orbital plane, ensuring that it cannot
come into contact with other operational satellites. On January 4, 2006, AIUB successfully
acquired first observations of the cooler cover using ZimSMART. The cooler cover appears
as dot as it is nearly stationary with respect to the Earth rotation. The stars appear as
streaks (Fig. 1.8).

Fig. 1.7 – ZimSMART (Herzog et al., 2013).

Fig. 1.8 – Image of the cooler cover, marked by the green circle (Herzog et al., 2013).
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1.2.2 Optical surveys for space debris in GEO

Most uncontrolled debris in GEO is expected at orbital inclinations less than or equal to 15
degrees. This is due to the fact that the orbital planes of uncontrolled GEO objects precess
around a stable plane, the so-called Laplacian plane, which has an inclination of about 7.5
degrees with respect to the equatorial plane. This precession is due to the combined effect of
the Earth’s oblateness, and perturbations exerted by the Moon and the Sun. The precession
period is about 50 years. The inclination of uncontrolled objects starting in the equatorial
plane will gradually increase to 15 degrees during the first 25 years and then decrease back
to 0 degrees during the next 25 years. As a result of this systematic orientation of the orbital
planes there is a strong correlation between the right ascension of the ascending node and the
inclination. Consequently the daily motions of the objects projected to the celestial sphere
exhibit a characteristic pattern. All objects with the same inclination have their culmination
points all close to the same right ascension. Due to this systematic orientation of the orbital
planes the number density of the catalogued objects projected to the celestial sphere looks as
shown in Fig. 1.9 (Schildknecht et al., 1999). The retrograde motion of the ascending node
for increasing inclination generates a sort of caustic pattern. This region of higher density is
due to the intersection of orbits with different inclinations. We find it close to the ascending
node at negative declination and close to the descending nodes and at positive declination.
Fields in the caustic corresponding to different orbital inclinations may be selected in order
to increase the detection rate (Schildknecht et al., 2001).

Debris released from objects in GEO, e.g. mission related objects or material released
due to aging processes, is expected to stay in orbits similar to the orbits of their parent
bodies. Even pieces stemming from explosions in GEO will generally remain in the GEO
region. The energy increment or decrement they get during the explosion is usually not
sufficient to considerably alter their orbital plane or their semimajor axis. The debris will
not only start with orbits similar to their parent objects, but their orbits will also undergo
similar perturbations and thus evolve in a similar way (the latter may not be true for objects
with a very large area to mass ratio which react differently to radiation pressure forces). It
is therefore reasonable to assume the simple hypothesis that the catalogued GEO objects
trace the debris population. It is obvious that the detailed orbital characteristics of these
two populations will certainly differ from each other (debris from distinct explosion events)
but in general they are expected to occupy the same region in the orbital element space
(Schildknecht et al., 2004).

Sky surveys are used to look for the space objects. The survey fields could be wide,
covering a big portion of the sky, or deep surveys which are focused on smaller areas and
specialized to focus on certain objects or types of measurements. When defining the search
fields for a survey there is a series of observational constraints to be taken into account. First
of all the objects should be observed under good illumination conditions (the so-called phase
angle should be small), which means that the best locations are near the Earth shadow cone
(but still outside the shadow region!). Dense stellar background regions, in particular the
Milky Way, must be avoided. The fields should be at high elevations for a good part of the
night; the angular distance from the moon should be maximized. Last but not least the field
should cover the region of the catalogue population where one expects – according to the
mentioned hypothesis – the most debris pieces.

A typical survey series is processed in three steps:
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Fig. 1.9 – Apparent density of the cataloged GEO objects in the right ascension–declination-
space as seen from the geocenter. The density is given in objects per square degree
(status 2001) (Schildknecht, 2007).

1. Search for moving objects.

2. Determination of celestial coordinates for all moving objects (astrometry).

3. Orbit determination and correlation of found objects with catalog; display of results.

If an object with a reasonable apparent motion is found on a series of frames (step 1) its
position in a celestial reference frame is determined on each exposure by means of reference
stars (step 2). Here ‘reasonable’ means ‘within the range of expected apparent motion for a
near GEO object’.

Survey strategy

An ‘optimum’ survey may aim at the detection of as many different objects with as few
search frames as possible. On the other hand, one could also search for as many objects as
possible with a given combination of orbital elements. The aim of an object survey is thus
not simply a homogeneous coverage of the celestial sphere but a homogeneous coverage of
the space of orbital elements or part of it. For an optimum coverage of the element space
one may take advantage of the fact that a given field at the sky is crossed by objects on
many different orbits. Observing at the same right ascension and declination for a long
time span is therefore equivalent to observing an extended section in the element space.
Observing the same field for 24 hours leads to the observation of all objects occupying this
element space section. Observations of the same field for several hours can be statistically
extrapolated to the entire population in the element space section, because uncontrolled
objects may be assumed to be equi-distributed in longitude. For objects on near-circular
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geostationary orbits the elements of interest are inclination i, right ascension of ascending
node Ω, semimajor axis a (resp. drift rate ∆n), and longitude l at a given epoch. The last
two elements (location of object along orbit) can be covered by observing the same right
ascension and declination for a long time. The first two elements (location of orbital plane)
are covered by selecting different search fields at the sky (Schildknecht et al., 1999).

Scanning of declination stripes

The detection technique is based on an algorithm comparing several consecutive frames of
the same field in the sky. Fixed background stars are identified on a series of frames and the
remaining part of the frames scanned for any additional objects. In order to optimize the
signal-to-noise-ratio (SNR) for the objects of interest they are tracked during the exposures,
which, in the case of GEO objects, means that the telescope is stopped. For GTO objects
the tracking is of the order of 5–10 arcsec/s in hour angle (Schildknecht et al., 2004). As a
consequence the stellar background is drifting across the field of view during the exposure,
or in other words the stars leave trailed images on the frames. After each exposure the
telescope is moved in a way that the same area of the sky is passing the field of view at the
next exposure (see Fig. 1.10). With this method the telescope slowly scans the GEO ring
from east to west at a fixed declination, while it is following the stars.

Fig. 1.10 – Tracking scenario for surveys. The telescope is tracking the object with its ex-
pected motion during the exposure and is repositioned between the exposures in
order to always observe the same field in the sky (Schildknecht, 2007).

Masking Technique

There are many different approaches to detect ‘moving’ objects with respect to the stars.
All methods must be optimized in terms of speed, given a large amount of data per frame.
One of these methods is the masking technique described e.g. in (Schildknecht et al., 1995).
A reference frame is used to generate a mask covering every object found on the frame. For
each object, the digital mask is made slightly larger than the original object image itself.
The subsequent search frames are then scanned using this mask. Consequently, only the
portion of the frame that contains no stars must be searched for unknown objects. The
same reference mask can be applied for a long time interval if siderostatic tracking is used.
In the earth-fixed horizon system, this corresponds to a scanning strip in the sky (e.g. for
the search of geostationary objects). The time necessary to generate the mask is negligible
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in this case. If the search is performed with a fixed telescope, the mask has to be extended
continuously to the east.

Signal-to-noise ratio

In order to get a good signal-to-noise ratio (SNR), the objects should be tracked. If the
object’s light is integrated onto the same pixels and the readout noise of the chip is negligible,
the SNR increases with the square root of the exposure time. If, on the other hand, the
object is moving with respect to the pixels, the maximum achievable SNR is limited by
the background noise. The optimum exposure time, in this case, is a few pixel crossing
times. The optimum exposure time is a trade-off between 1) the length of the star trails
(i.e. the decrease of the unmasked part of the frame) and 2) the SNR of faint objects (i.e.
the detection limit for orbiting objects). It depends on the star density in the selected field
(Schildknecht et al., 1999). Extending the integration time would in case 1 increase the
probability that the image of the moving object is hidden by a trailed image of a star and in
case 2 reduce the SNR (Schildknecht et al., 1997). For GEO and GTO surveys the optimum
exposure times are of the order of a few seconds (Schildknecht et al., 1995).

The signal-to-noise ratio of faint objects may be increased by tracking with the expected
motion of the objects of interest. In order to increase the detection probability, the search
should be performed at the point of slowest motion, e.g. at the culmination point for the
geostationary objects with non-zero orbital inclination or at the apogee for GTO objects. If
the orbital plane is known e.g. when looking for debris of an exploded upper stage or satellite
a few days after disintegration, the search can be carried out along-track while tracking with
the expected motion (Schildknecht et al., 1995). Maximum SNR may be achieved by tracking
with the expected apparent motion of the objects of interest during exposure, maximizing
the detection probability for objects with a specific orbit type (Schildknecht et al., 1997).

Orbit determination and correlation with the catalog

An important goal of space debris surveys is to detect uncatalogued objects and determine
the orbits of detected objects. This is done in order to study the populations of debris
as a function of the orbital elements and to update the catalogue (step 3 in processing of
survey series). In order to get orbit information for a debris, several precise astrometric
positions have to be measured which involves the determination of the CCD coordinates
of the object image and their transformation to celestial coordinates. The centroid of a
relatively faint object image can be determined with a precision of a tenth of a pixel. If at
least one reference star is present on a frame containing a space object, the CCD coordinates
of the object image can be transformed to celestial coordinates with an accuracy of a few
tenths of an arcsecond provided the scale of the mapping, the orientation of the camera, and
possible optical distortions are known (calibrated off-line). From the detection frame and
from a second frame (used for confirmation) two initial positions may be extracted for an
object (Schildknecht et al., 1997).

The determination of an orbit for the newly detected objects is a critical and non-trivial
task. To first order the task consists essentially in finding a particular solution of the one-
body version of the equations of motion:

r̈ = −µ r
r3
, (1.2)
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where µ is the product of the constant of gravitation and the mass of the central body, r
the geocentric position vector of the object (and r its length) and r̈ its second time derivative.
If the length of the orbit arc is short (a small fraction of the revolution period), the orbit
model may be sufficient to represent the observations within the arc with sufficient accuracy.
If the arc length is growing, the equations of motion become more elaborate. Symbolically,
we write them as follows:

r̈ = −µ r
r3

+ δf(t; r, ṙ, p1, p2, . . . , pm), (1.3)

where f(. . . ) is the perturbing acceleration and pi, i = 1, 2, . . . ,m are additional unknown
parameters, so-called dynamical parameters of the orbit; one may think of them as paramet-
ers characterizing radiation pressure or atmospheric drag. Usually, one may assume that the
absolute value of δf(. . . ) is much smaller (typically by a factor of the order of 103) than the
absolute value u/r2 of the main term (Schildknecht, 2007). Factors like area-to-mass ratio
of the object and the altitude of the orbit also play a role in determining the magnitude of
perturbing accelerations. In the present algorithms used at AIUB, the classical Keplerian
orbital elements are used as the unknowns to characterize the initial values of the parameter
estimation process. They are however interpreted as the osculating elements referring to a
particular epoch t0 (initial epoch in this case). These osculating elements are derived from
the position and velocity vectors r(t0) and ṙ(t0) using the formulae of the two-body problem.
The orbit to be determined may then be written as the solution of an initial value problem
(as long as the orbit model is assumed to be purely deterministic):

r̈ = −µ r
r3

+ δf(t; r, ṙ, p1, p2, . . . , pm)

r(t0) = r(a(t0), e(t0), . . . , T0(t0))

ṙ(t0) = ṙ(a(t0), e(t0), . . . , T0(t0))

(1.4)

When determining a first orbit the non-linear orbit determination problem is not reduced
to a linear one, but instead the attempt is made to directly solve the non-linear problem. A
modified Gauss method is used to solve a boundary value problem:

r̈ = −µ r
r3

+ δf(t; r, ṙ)

r(ta) = o(ta) + ρaea

r(tb) = o(tb) + ρbeb,

(1.5)

where the boundary epochs ta and tb must be selected as two observation epochs (not
necessarily the first and the last one). The indices a and b thus characterize two observation
numbers. o(t) is the barycentric position vector of the observer at epoch t, ea, eb are the
observed unit vectors and ρa, ρb are the (originally unknown) distances. The osculating
elements as unknowns are replaced by the following six parameters (as auxiliary unknowns
to be determined first):

p1, p2, . . . , p6 = ρa, ρa, αa, αb, δa, δb, (1.6)
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where αa, αb, and δa, δb are the right ascension and the declination of the observed
astrometric places. The details of the particular method used to solve the problem Eq. (1.5)
are given in (Beutler, 2004).

The series of discovery observations from space debris surveys, however, is usually very
short and consists of a few position measurements spread over a time interval of a few
minutes. Given the orbital periods of the objects, which are of the order of 1 day, it is
obvious that these extremely short arcs prevent determining full six-parameter orbits. There
are in principle two possibilities to eventually obtain a full orbit in these cases, (a) acquire
follow-up observations in near real time or (b) to plan the surveys in a way that most objects
of interest will appear incidentally on several observation series during the same or during
consecutive nights. In the first case we may determine a circular orbit from the discovery
observations and compute ephemerides to perform follow-up observations. Depending on
the type of orbit (GEO, GTO, etc.) and the field of view of the sensor used for the follow-up
these observations must be acquired within a time interval of 15 min up to several hours
after the discovery (for details see (Musci et al., 2005)). Additional observations will then be
required during the following night to finally derive an orbit allowing recovering the object
after many revolutions.

In the second case all observations from different epochs, e.g., from different nights, have
to be cross-correlated in order to find detections which belong to the same object. The
latter is eventually best tested by trying to fit an orbit through all observations, which are
supposed to stem from the same object. However, this process is computationally intensive
and we need a method to pre-select candidate observations. Algorithms used to select these
candidates should take into account the position and the apparent motion from the single
detections and must confine the orbital element space to a region as small as possible but
still appropriate for the objects of interest.

The correlation with an existing catalog of orbits is finally done by comparing either the
observed positions or the determined orbital elements, or a combination thereof, with the
corresponding quantities derived from the catalog. This correlation should be based on
the known accuracy of the catalog orbits, i.e., should make full use of possible covariance
information.

1.2.3 Optical measurements

In this work only optical measurements are considered. The optical measurements are treated
after the astrometry has been performed. With an optical system a pair of angles (α, δ)t
at an epoch t can be observed, where the angles are defined as in the schematic given in
Fig. 1.11. This topocentric reference frame is centered on the optical sensor, and oriented
in the same way as the geocentric equatorial coordinate system (i axis parallel to the vernal
equinox direction and ij plane parallel to the equatorial plane) (Vallado, 2007).
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Fig. 1.11 – Definition of measured angles right ascension α and declination δ (Zittersteijn,
2017).

The position of the object is computed with respect to the reference stars, as mentioned
in the previous sections. For the optical data obtained at the Zimmerwald observatory the
uncertainty of the extracted position is around 0.7 arcsec ≤ σ ≤ 1 arcsec. Note that in
this sidereal tracking mode the rotation of the Earth is not corrected for, therefore the stars
appear as streaks and a GEO object is a point. Other tracking modes are possible. This
thesis does not concern itself with the extraction of the astrometric position. The interested
reader is referred to (Früh and Schildknecht, 2012); (Schildknecht, 2007); (Schildknecht et
al., 1997); (Schildknecht, 1994).

Space debris is typically observed multiple times in rapid succession. Such a series of ob-
servations is also called a tracklet or very short arc and consists of four to seven observations
made at 15 s to 30 s intervals (in the case of the Zimmerwald observatory). A schematic
representation of such a series is given in Fig. 1.12.

Fig. 1.12 – A schematic representation of a tracklet, which is a series of closely spaced optical
observations (Zittersteijn, 2017).

A series of observations are made to be sure that an object has been observed and to obtain
a larger number of observations which is beneficial when e.g. a least-squares estimator
is applied to them. The tracklet formation process consists of associating the individual
observations to one another to form the correct series of observations. In surveys of wide-
field telescopes possibly many non-resolved object images are present on the single frames of
the series. Hence, reliable methods have been found to associate the object images stemming
from the same object with each other, also called object image linking. Such a method has
been proposed by (Früh and Schildknecht, 2012).

The tracklets of object images allow extracting exact positions which are essential for the
orbit determination process. To make the most of the information received from the images,
this work exclusively considers that space debris is observed in this manner. A tracklet
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describes such a short portion of the object’s orbit (e.g. for a GEO orbit about 2-5 min of
a 24 hr period) that a straight line can approximate the object’s motion during that period.
By fitting a straight line to the observations in a tracklet both the average position and the
angular rate of the object are found. This is a so-called attributable as given in Eq. (1.7).
The epoch of the attributable is the average epoch of the observations in the series.

θt = (α, δ, α̇, δ̇)t (1.7)

An important aspect of the observations and tracklets is the quantification of their un-
certainty. In general, it is assumed that the noise on a single measurement is Gaussian.
Therefore a single measurement is described with a mean value and a standard deviation σ0.
The σ0 can be characterized and depends on the telescope, CCD hardware, and image pro-
cessing software used. However, it is arduous to do so and is in itself not perfectly accurate.
Another option is to use the uncertainties that are provided by the least-squares straight
line fit. In this work, all measurement errors are assumed to be Gaussian with no bias.

1.3 Existing methods of initial orbit determination

Some methods contributing to initial orbit determination using optical observations origin-
ated from the asteroid community. Milani et al. (2004) developed the principle of admissible
regions, they did it over the range and range-rate space. They restricted the space of orbital
solutions to the physically meaningful ones. An asteroid orbit, for instance, should have a
stable elliptic orbit around the Sun. They did so with a few astrometric observations over a
short time span, (in other words very short arc observations).

A considerable amount of literature has been published since then on the issue of optical
measurement correlation for objects on Earth-bound orbits. Tommei et al. (2007) applied
the admissible region theory to orbits of space debris. Maruskin et al. (2009) and Fujimoto
et al. (2014) developed a methodology based on the same principle. Schumacher et al.
(2013) used the boundary-value representation to initiate candidate solutions. The individual
approaches originate from using different sensors, observation strategies, and assumptions,
and consequently each come with advantages and disadvantages. The different methods are
categorized and discussed in Chapter 2.

1.4 Outline of the thesis

The thesis is structured as follows. In the upcoming chapter, information about the differ-
ent existing methods for tracklet correlation and initial orbit determination are presented.
Chapter 3 shows the working of the Optimized Boundary Value Initial Orbit Determination
(OBVIOD) method, which is used as a baseline for the methods presented in this thesis.
This chapter also describes how the Lambert’s orbital boundary value problem is solved in-
side the OBVIOD method. In Chapter 4, a proposed technique called the Shooting method
is described and its development is shown along with the challenges faced. Furthermore,
an extension of this scheme is shown where improvement attempts were made using differ-
ent strategies. It also describes the algorithm finally chosen to work along with Shooting
method and its advantages over the previous versions of the latter. This chapter ends with
a description of the challenges it poses and possible ways to solve them. In Chapter 5, the
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results for the different methods are shown. Finally in Chapter 6, conclusions are drawn
about the performance and the possible future work is outlined.
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In this chapter, the methods that are applied for tracklet-to-tracklet correlation are discussed.
All the algorithms are discussed in their general form.

The discussion for correlation methods starts from the admissible region, which was widely
used for various methods, after which, the different tracklet association algorithms are presen-
ted. The motivation for using them is described along with the possible improvements.

Admissible region is defined as the set of all physically acceptable orbits that are consistent
with the observation of an object. Additional constraints on the object’s orbital semimajor
axis and eccentricity can be used to further constrain the admissible region.

2.1 Admissible Region

2.1.1 Origin of the concept

The admissible region approach has been previously used in the asteroid tracking community
for identification of asteroids based on very short arc observations. The admissible region
consists of all the points in space where the true particle can possibly be found. For this
reason sometimes it is also referred to as the uncertainty surface. Specifically, Milani et
al. (2004) referred to it as a region in the plane of possible range and range-rate values,
for which a given line-of-sight observation produces an orbit solution that satisfies certain
criteria. This concept has been extended in the SSA community in order to track space
objects in Earth bound orbits. In the context of Earth orbiting objects admissible region is
determined by restricting all possible orbit solutions to the stable ones around the Earth.

In Milani et al. (2004) the admissible region is mentioned in the context of asteroid dis-
covery. There are various conditions that should be met by the object discovered. These
conditions originate from the orbit of the object, its close transfer in the region around
the Earth, and its position in the solar system. The conditions are investigated and an
admissible region following all the physical constraints is chosen. This is followed by the
sampling of the admissible region with a finite, and not too large, subset of points. In order
to sample, the authors defined an algorithm to triangulate the admissible region. Among all
possible triangulations of a domain, there is a well-known construction, called the Delaunay
triangulation, see Bern and Eppstein (1992).

A Delaunay triangulation has a number of optimal properties, e.g. it is the triangulation
with the largest minimum angle (among all the triangles). There is an efficient algorithm to
compute a Delaunay triangulation, starting from a finite sampling of the boundary. Thanks
to the explicit analytic description of the admissible region one can sample the boundary
with approximately uniform distances and compute a Delaunay triangulation with the given
nodes on the boundary. The nodes of the triangulation give a sample, the edges joining
them and the triangles an additional structure. Several points on the boundary are selected
which produce an initial triangulation using these boundary points as nodes. Then the nodes
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inside the admissible region are added and the edges are changed to achieve the triangulation
(Milani and Knezevic, 2005).

In the first example of how to use the admissible region and its triangulation, Milani et al.
(2004) discuss the generation of ephemerides. If the orbit of an object has been determined
according to the least squares principle, the ephemerides at some time t1 different than
the ones at time t are predicted values of the angles α, δ with a confidence region on the
celestial sphere. When the available observational data are not enough to compute a full
least squares orbit (e.g., if there are only two observations, or if the observed arc is very
short), the ephemerides are considered as the set of values for the angles α, δ at time t1
which is compatible with the data. If one can assume the object satisfies the conditions
defining the admissible region, that is, if one can exclude interstellar orbits, satellites of the
Earth, and shooting stars, then there is a set of admissible values for α, δ at time t1 which is,
a compact subset of the celestial sphere. The set of admissible values for α, δ is sampled by
triangulation. Given a triangulation of the admissible region, computed from the attributable
representing the observations available, one can compute the predicted observation at time
t1 for each node of the triangulation. Each node corresponds to a choice of the values of
(ρ, ρ̇) at the time t, and together with the four components of the attributable (defined in
subsection 1.2.3) this provides a set of six initial conditions, that could be used to compute
the set of orbital elements at the epoch t.

Further development of the Admissible Region

Spoto et al. (2018) developed an initial orbit computation method (in the domain of as-
teroids), based on systematic ranging, which is an orbit determination technique that sys-
tematically explores a raster in the topocentric range and range-rate space region inside the
admissible region (AR). They use two different grids depending on the boundary of the AR.
The first grid is larger and less dense, the second one is based on a refinement using the
value of the target function at each point in the first grid. Given an attributable, they define
the AR as the set of all the possible couples (ρ, ρ̇) satisfying the following conditions:

1. The object belongs to the solar system, and it is not a too long period comet. They
only consider the objects for which the value of the heliocentric energy is less than -k2

/(2amax), where amax = 100 au and k = 0.01720209895 is the Gauss’ constant.

2. The corresponding object is not a satellite of the Earth, i.e., the orbit of the object
has a non-negative geocentric energy when inside the sphere of influence of the Earth,
whose radius is

RSI = a⊕ 3

√
µ⊕
3µ�

' 0.010044au. (2.1)

Here a⊕ is semimajor axis of Earth’s orbit around Sun, µ⊕ is gravitational constant of
Earth and µ� is gravitational constant of Sun. The AR is a compact set and can have at
most two connected components (disjoint regions) in the (ρ, ρ̇) space. The AR usually has
one component, and the case with two components indicates the possibility for the object
to be distant (perihelion q > 28 au). The number of components depends on the number
of the roots of a polynomial resulting from condition 1 (for more mathematical details see
Milani et al. (2004) and Milani and Gronchi (2009)).
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E�(ρ, ρ̇) =
1

2
||ṙ(ρ, ρ̇)||2 − k2 1

r(ρ)
(2.2)

This polynomial cannot have more than three distinct real positive roots. The AR has
two components if there are three roots and one component if there is only one root. It is
worth noting that the region defined by condition 2 could contain points with arbitrarily
small values of ρ. The boundary of the region given by condition 2 turns out to have two
different shapes: it can be formed just by the line of geocentric energy equal to 0 (if it is
entirely contained in the region 0 < ρ < RSI), or by a segment of the straight vertical line
ρ = RSI and two arcs of the zero curve of the geocentric energy (for 0 < ρ < RSI). Given
all these conditions, the AR is sampled with a finite number of points.

The AR is sampled in two different ways, depending on the number of connected compon-
ents and the values of the roots (r1, r2 and r3 in ascending order). The conditions and grids
used in the (ρ, ρ̇) space are described in Spoto et al. (2018). In particular, they compute a
rectangular grid in the range/range-rate space, with range-rate controlled by the AR equa-
tions (Milani et al., 2004). Nevertheless, since the AR has a shape dictated by a polynomial
equation and it is not a rectangle, the values of the heliocentric energy are checked for each
grid point and the ones not satisfying condition 1 are discarded. Orbits not satisfying con-
dition 2 are discarded as well, except while computing the probability for the asteroid to be
a satellite of the Earth.

For scanning the AR, the authors first propose creation of manifold of variations (MOV).
Given a subset K of the AR, the MOV M is defined as the set of the points (A∗(ρ0), ρ0)
such that ρ0 ∈ K and A∗(ρ0) is the local minimum of the target function Q|(ρ=ρ0). In
addition, the value of the minimum RMS of the residuals is less than a given threshold. The
symbol A is used for attributable and ρ0 signifies the (ρ, ρ̇) space. The target function is
defined by:

Q(x) =
1

m
ξ(x)TWξ(x), (2.3)

where x = (A, ρ) are the fit parameters, m is the number of observations used in the least
squares fit, ξ is the vector of the observed-computed debiased astrometric residuals, and W
is the weight matrix (refer to Spoto et al. (2018) for more details).

At start of systematic ranging, assuming K is the AR, it is scanned with a regular semi-
logarithmic or uniform grid. For each sample point ρ0 = (ρ, ρ̇), ρ = ρ0 and ρ̇ = ρ̇0 are fixed
in the target function, and then A∗(ρ0) is searched by means of an iterative procedure. If a
nominal solution does not exist, a two-step procedure is followed further. The first step is to
compute a grid following the conditions in Table 2.1. After a preliminary grid, it is densified
further using the minimum and maximum value of ρ and ρ̇ among all the values of the points
for which the 4-dimension differential correction converges. A score with respect to the first
grid is computed. It is defined as the probability of an object to belong to different classes
(Near-Earth Object, Distant Object, Main object). The score is used to select the grid for
the second step.

If a nominal orbit was obtained by unconstrained differential corrections, starting from a
preliminary orbit as first guess, for instance, using the Gauss’ method, (Milani and Gronchi,
2009), then the nominal solution can be used as the center of the subset of the MOV one
is interested in, and a different procedure can be adopted to scan the AR. In some cases a
spider web sampling can be computed in a neighborhood of the nominal solution (Tommei
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Table 2.1 – Conditions to create a preliminary grid for systematic ranging (Spoto et al., 2018).

et al., 2007). This is obtained by following the level curves of the quadratic approximation
of the target function used to minimize the RMS of the observational residuals.

The advantage of the use of the cobweb is that, firstly, it is faster than the systematic
ranging, and secondly it is more accurate in the cases for which one has a reliable nominal
solution already (Spoto et al., 2018). Fig. 2.1 shows an example of the spider web sampling
on the (ρ, ρ̇) plane, where ρ∗ and ρ̇∗ are the range and range-rate values of the nominal
solution, v1 being the eigenvector corresponding to the greatest eigenvalue λ1.

Fig. 2.1 – Example of spider web around the nominal solution ρ∗ = (ρ∗, ρ̇∗). The points
follow concentric ellipses corresponding to different values of the parameter R for
each fixed direction (Spoto et al., 2018).

Orbit determination for asteroids

The first complete mathematical method to convert astrometry into orbits had been estab-
lished by Gauss (1963). He devised an algorithm to compute a preliminary orbit satisfying
three given observations on different nights. When additional observations became available,
Gauss proposed to correct the preliminary orbit by solving a least squares problem. This
method is now called differential corrections, and this sequence, preliminary orbit followed
by least squares, is now the algorithm almost universally used and considered classic. Mil-
ani and Knezevic (2005) use the concept of attributable and admissible region to propose
a method for orbit determination of asteroids. First, the attributables are computed by
fitting the observations of the available very short arcs. The AR is sampled in such a way
that there are a finite number of points in the initial conditions space. Those points act as
the Virtual Asteroids (VAs), sharing the reality of the object, in the sense that the orbit
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through one of them is a good approximation of the orbit of the real object, but one does not
know which one. To efficiently sample the admissible region defined above (subsection 2.1.1),
Delaunay triangulation is used with the given nodes on the boundary. Then the nodes are
selected as points (ρi, ρ̇i), i = 1, N sampling the admissible region, with the sides and the
triangles providing an additional geometric structure. The properties defining the Delaunay
triangulation are metric ones, thus the nodes selected depend upon the choice of a metric.
Different metrics can be used to enhance the resolution in some portions of the admissible
region, e.g., when the main goal is to search for either NEO or main-belt asteroids. The set
of VAs selected is then

Xi = (α, δ, α̇, δ̇, ρi, ρ̇i), i = 1, N. (2.4)

The set of six coordinates forming the vector Xi = (α, δ, α̇, δ̇, ρi, ρ̇i) can be considered
as a set of orbital elements. They can be converted into Cartesian position and velocity
(topocentric, then heliocentric since the observer’s position is well known), as well as into
other types of elements, e.g. Keplerian. If these elements are propagated (nonlinearly) to
some later epoch t1, the covariance matrix can be propagated (linearly) to it as well. It is
possible to compute the predicted attributable (for observation time t1) with uncertainty for
each node. If another very short arc of observations is available at the second epoch, its
attributable with uncertainty can be compared with the predictions for each VA (Milani and
Knezevic, 2005).

An algorithm has been defined (Milani et al., 2001) to decide whether two arcs of obser-
vations are to be identified to fit together. It is only for the case when an orbit is available
(for at least one of the two) with its uncertainty, represented by a covariance matrix. This
case of identification is called attribution. Given an attributable, the attribution penalty
is defined as a measure of the likelihood that another attributable, computed from an in-
dependently detected too short-arc (TSA), actually belongs to the same object. TSA is a
small part of the overall orbit such as a couple of minutes arc from a 24-hour orbit. If the
attribution penalty is low for some VA, then the two attributables may belong to the same
object (Milani and Knezevic, 2005). If this is the case, a preliminary orbit is needed to be
used as a first guess to start the differential correction procedure. It was concluded by the
authors that the value of attribution penalty threshold to be used in large scale production
of TSA linkages can only be dictated by the analysis of the results of large scale tests.

Statistical orbital inversion

Muinonen et al. (2012) also proposed a method different from those based on admissible
regions. They first determine, out of tracklets, provisional orbits using a method called Stat-
istical Orbital Ranging (or Inversion). In the latter the orbital element probability density
is examined using a Monte Carlo selection of orbits, assuming topocentric ranges for two
observations within a tracklet and fitting the remaining ones. Initially, in the paper of 2006
(Muinonen et al., 2006), the authors use the orbits from tracklets at different epochs, cal-
culated with the Ranging method, to compute clouds of geocentric ephemerides at common
epochs. To search for the overlapping of these clouds, they use a so-called Phase-space Ad-
dress Comparison, where every orbit is transformed to a single value, and the procedure
is sped up. After this first step, to eliminate the most unlikely linkages, the associations
are confirmed using again Orbital Inversion with all observations of the associated track-
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lets. Here, to improve the performance, a so-called Stepwise Ranging is used, which adds
observations step by step in the inversion procedure, reducing the number of combinations.

Muinonen et al. (2012) proposed a new way based on the Markov Chain Monte Carlo
method to solve the orbital inversion problem. The advantage of the statistical orbital
inversion method is the better adaptation to the topology of the problem through the Monte
Carlo clouds, as well as the applicability to situations where the observations give rise to
constrained nonlinear orbital elements probability density functions. Probability density
function (pdf) is a function over the sample space, of a continuous random variable from
which the probability that the variable is within a certain interval can be obtained. In the
case of extensive observational data, the method reduces to sampling a multivariate Gaussian
pdf. The downside is also in this case the substantial amount of computing power necessary
for the Monte Carlo method.

2.1.2 Application to space debris

Extension of the method used for asteroids to space debris

Tommei et al. (2007) applied the concept of the admissible region in the context of space
debris. They show how to apply the methods developed for preliminary orbit determination
of heliocentric objects to geocentric objects. They focus on the definition of an admissible
region for space debris, both in the case of optical observations and radar observations; then
they outline a strategy to perform a full orbit determination.

The data from one TSA cannot allow for the determination of an orbit: e.g. if only two
angular observations are available, as in the case of a trail, there are four equations in six
unknown orbital elements. Thus it is not possible to solve the orbit determination problem
without solving first the identification problem, finding two or more TSA belonging to the
same physical object and an orbit fitting all the observations (linkage between two or more
TSAs). The above discussion applies to optical observations, but it is possible to formulate
a similar problem for radar data.

This problem is computationally complex. The complexity increases sharply with the size
of observable population (at least like the square of the number of TSAs). This acts like
a limiting factor for the identification problem. If the latter is not solved, the data do not
provide orbits for any object. If the identification problem is solved incompletely then a
significant fraction of the observational data remain locked in the TSA and have no practical
use, apart from an approximate estimate of the population size (Tommei et al., 2007).

The solution proposed by Milani et al. (2004) and Milani and Knezevic (2005) uses the
concept of attributable, a four-dimensional quantity defined by two or more observations
and synthesizing the useful information from a TSA. The simulations have shown that the
problem can be solved for several TSAs of the order of 1 million collected in each night of
the survey. The same technique was used for space debris. The definition of the admissible
region is modified, taking into account the orbits of the Earth’s satellites.

The admissible region for a space debris object observed by a ground-based optical sensor
is analytically defined. The admissible region replaces the conventional confidence region as
defined in the classical orbit determination procedure. The main requirement is that the
geocentric energy of the object is negative, that is the object is a satellite of the Earth.
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2.1 Admissible Region

Let P be the geocentric position of an orbiting space debris D observed at a time t. Then

P = PO + PD, (2.5)

where PO is the geocentric position of the observer O and PD = ρR̂ is the vector in the
observation direction (Fig. 2.2).

Let
(ρ, α, δ) ∈ R+ × [−π, π)× (−π/2, π/2) (2.6)

be the spherical polar coordinates defining the vector PD.

Fig. 2.2 – The space debris D is observed by the point O on the surface of the Earth. The
geocenter is denoted by G (Tommei et al., 2007).

As reference system for the polar coordinates, an equatorial one (e.g., J2000) is used, that
is α is the right ascension and δ the declination. Since the range ρ and the range rate ρ̇ are
left undetermined by the attributable, following Milani et al. (2004), Tommei et al. (2007)
derive conditions on (ρ, ρ̇) under the hypothesis that the object D is a satellite of the Earth.
The quantities used are the following:

• Geocentric two-body energy per unit mass of the object

E⊕(ρ, ρ̇) =
1

2
‖Ṗ‖2 − µ⊕

‖P‖
, (2.7)

where µ⊕ = Gm⊕, m⊕ is the Earth’s mass

• Lower bound for the space debris distance from the position of the observer on the
Earth, that is the minimum value of range (ρmin) will be

ρmin = 2r⊕ ' 12756km, (2.8)

where r⊕ is the value of the Earth’s radius. We use this bound because we are interested
in space debris in high orbits; the objects in lower orbits are usually observed by radar
and the admissible region changes.

• Upper bound for the space debris distance from the position of the observer on the
Earth, that is the maximum value of range (ρmax) will be

ρmax = 20r⊕ ' 127560km, (2.9)
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2 Initial Orbit Determination

(a) (b)

Fig. 2.3 – Admissible region for a space debris D from optical data (one connected compon-
ent): E⊕ = 0 is the curve of zero geocentric energy, ρmin and ρmax are the lower
and the upper limit for the ranges.

Writing the conditions on (ρ, ρ̇) explicitly:
(A) C1 = (ρ, ρ̇) : E⊕ < 0 (D is a satellite of the Earth);
(B) C2 = (ρ, ρ̇) : ρmin < ρ < ρmax (the distance of the object from the observer is in the

interval (ρmin, ρmax)).
Given an attributable Aopt, the admissible region for a space debris D is defined as the set

C = C1 ∩ C2 (2.10)

The condition (B) bounds only the ρ therefore the region C2 might appear as an infinite
stripe in (ρ, ρ̇). In order to look for the analytical and geometric description of condition (A)
the geocentric position of object D is used to derive the relation for its geocentric velocity

Ṗ = ṖO + ρ̇R̂ + ρα̇R̂α + ρδ̇R̂δ (2.11)

The relation for geocentric position and velocity in terms of polar coordinates is used to
expand the geocentric energy equation. The resulting equation is studied by Tommei et al.
(2007), Milani et al. (2004) and it was concluded that the region C1, defined by condition (A),
can admit more than one connected component, but it has at most two. The qualitative
structure of the confidence region is shown in the figures. Fig. 2.3 shows the case with
one connected component: at the left ρmax is less than the range of the curve E⊕ = 0
corresponding to ρ̇ = 0, while at the right it is greater. Fig. 2.4 shows the case with two
connected components: at the left ρmax is less than the minimum range corresponding to the
second connected component of the curve E⊕ = 0, while at the right it is greater.

In order to exclude orbits of “just-launched” objects, a third condition was added, on
the pericenter q = a(1 − e) (here a is the semimajor axis and e the eccentricity), that is
q > r⊕+h, where h could be the height of the atmosphere. But to compute analytically the
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2.1 Admissible Region

(a) (b)

Fig. 2.4 – Admissible region for space debris D from optical data (two connected components):
E⊕ = 0 is the curve of zero geocentric energy, ρmin and ρmax are the lower and the
upper limit for the distance of D from the observer.

corresponding curve in the (ρ, ρ̇) plane was deemed to be extremely complicated. However,
a restriction on the semimajor axis was made that corresponds to fixing a lower bound for
the energy, by replacing condition (A) with

(A’) C1 = (ρ, ρ̇) : E⊕min < E⊕ < 0 (D is a satellite of the Earth and its semimajor axis is
greater than a fixed quantity).

Fig. 2.5 shows the resulting admissible region (only the case with one connected com-
ponent). Milani and Gronchi (2009) however, substitute the condition q ≥ r⊕ + h into the
two-body formulae and obtain√

1 +
2E⊕‖c‖2

G2m⊕2
≤ 1 +

2E⊕(r⊕ + h)

Gm⊕
(2.12)

Since the left-hand side is ≥ 0, they impose the condition

1 +
2E⊕(r⊕ + h)

Gm⊕
≥ 0 (2.13)

on the right-hand side; this is again a ≥ r⊕ + h. By squaring Eq. 2.11 one obtains

‖c‖2 ≥ 2(r⊕ + h)(Gm⊕ + E⊕(r⊕ + h)). (2.14)

where c is the angular momentum vector per unit mass expressed in terms of ρ and ρ̇ (see
Milani and Gronchi (2009)) and E⊕ can be expressed in the same variables. The Eq. 2.13 is
an algebraic inequality in the variables (ρ, ρ̇); by another squaring, it is possible to convert it
into a polynomial equation of degree 10 in ρ and degree 4 in ρ̇. Fig. 2.6 also shows this inner
boundary, as well as an alternative outer boundary constraining the apocenter Q at some
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large value. The main limitation of this approach is that the authors do not have a rigorous
proof that the region defined by q ≥ r⊕ + h and E⊕(ρ, ρ̇) ≤ 0 has at most two connected
components.

Fig. 2.5 – Admissible region for a space debris D taking into account the condition (A′)
instead of (A)

Fig. 2.6 – The admissible region for an Earth satellite must be a subset of the region with
negative geocentric energy. Additional constraints may be added by using the phys-
ical boundary r = r⊕ + h defined by the atmosphere and the dynamical boundary
defined by the sphere of influence r ≤ rSI : a ≥ r, q ≥ r and Q ≤ rSI can be used.
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The admissible region for space debris is used in the same way as in the asteroid case, to
be sampled by a swarm of virtual debris, which is analogous to the virtual asteroids. In this
way the linkage problem is transformed into a multiple hypothesis attribution problem (see
Milani and Gronchi (2009)). If the Delaunay triangulation method is used, the starting point
is a sampling of the boundary of the admissible region. For the outer boundary this is the
same as in the asteroid case, for the inner one, either a minimum ρ or a minimum perigee q
can be used. The first choice is simpler and leads more easily to a reliable algorithm, because
with the second condition one cannot be sure of the number of connected components. A
reasonable approach would be to triangulate a region with the simplest inner boundary,
then discard the nodes which turn out to have a ballistic orbit with q < r⊕ + h (Milani and
Gronchi, 2009).

Virtual debris particles

The uncertainty surface commonly known as admissible region can be discretized by virtual
debris (VD) particles just like the virtual asteriods mentioned in the section above. Each
VD particle is an approximation to a possible orbit for the observed particle of space debris.
Viewed as a whole, the set of VD particles forms a virtual debris field, or VD field, which
approximates the macroscopic uncertainty distribution associated with a given attributable
vector.

Maruskin et al. (2009) and Maruskin et al. (2007) did a preliminary numerical analysis of
a randomly chosen attributable vector and its corresponding VD field. It showed that before
several hours had passed, about half of the VDs will have crashed into the Earth. Motivated
by these observations, they presented a tighter restriction on the uncertainty region of the
(ρ, ρ̇) plane. In addition to demanding the distance between the debris particle and observer
lies between 2 and 20 Earth radii at the moment of observation, additional restrictions were
placed on the periapsis and apoapsis of the orbit. In particular, the orbit’s periapsis is
required to be greater than 1 Earth radius plus 200 km, and the apoapsis to be less than 25
Earth radii. This places additional constraints on the admissible region and reduces its size
considerably. The admissible region is mapped into the Delaunay space and later used to
construct an algorithm for computing an orbit correlation, the procedure is briefly described
in section 2.2.

Bayesian admissible region

Fujimoto and Scheeres (2012) propose a technique of correlating multiple optical observations
by means of probability distributions defined by the admissible region expressed in Poincaré
orbit element space. They propose a transformation of the VD particles from topocentric
spherical coordinates into Poincaré variables. The latter are the non-singular canonical coun-
terpart to the equinoctial orbit elements. The exact transformation is performed in several
steps. First, from topocentric spherical coordinates to geocentric Cartesian coordinates and
then to orbital elements. Finally, the orbital elements are transformed to Poincaré variables.
The map of the admissible region is a two-dimensional bounded submanifold, or a disk,
in six-dimensional Poincaré space. If two such distributions are propagated to a common
epoch, their intersection would mean that the two optical observations for which the AR
was defined, belong to the same object.
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Multiple hypothesis search

DeMars and Jah (2013) consider the space of range and range-rate to define the admissible
region. The angular positions and rates are considered to be available following the concept
of attributable defined above. The position of the object with respect to the planet center
is given as the sum of the position of the ground station and the position of the object with
respect to the station, and likewise for the velocities. The position and the velocity of object
with respect to the station is given in the spherical coordinates of range ρ, right ascension
α, declination δ, and their time rates of change, such that

riobj = ρuρ,

viobj = ρ̇uρ + ρα̇uα + ρδ̇uδ
(2.15)

where the unit vectors of uρ, uα, and uδ are given in terms of the angles α and δ.
The parameters in Eq.2.14 are inserted in the two-body energy equation, along with the

ground station’s position rsta and velocity vsta allowing it to be expressed as:

2E = ρ̇2 + 2vstauρρ̇+ f(ρ) (2.16)

where f(ρ) is expressed in terms of α, α̇, δ, δ̇, rsta, vsta, ρ and µ. The above equation is a
quadratic in ρ̇, given the angular positions and rates. It can be solved for the range-rate for
values of range starting at zero and increasing. Setting the energy equal to zero, yields a
region of range and range-rate values which are admissible, that is the zero-energy curve that
is produced describes a bound on the set of all elliptic Earth-bound orbits. This region then
fully describes the possible combinations of range and range-rate which permit the object
to be in an elliptic orbit about the Earth. Carrying out the calculations yields the region
as shown in Fig. 2.7. Constraint is added on range to further reduce the combinations of
range/range-rate pairs that lead to possible orbit solutions. This type of constraint manifests
as a line of constant range spanning the values of range-rate. In Fig. 2.8 minimum and max-
imum range conditions (ρmin and ρmax, respectively) were added on top of the unconstrained
admissible region from Fig. 2.7. Thus, the possible range/range-rate pairs must not only lie
within the admissible region, but must also lie between the minimum and maximum range
values. One additional constraint related to semimajor axis, or equivalently energy was ad-
ded. By allowing for a minimum and maximum semimajor axis, minimum and maximum
energy values could be determined.

These energy values were then used to generate two additional curves (in addition to the
zero-energy curve previously discussed) relating to range and range-rate. These curves are
illustrated in Fig. 2.8 and labeled with amin and amax. Therefore, the possible range/range-
rate pairs must lie between the curves specified by the semimajor axis (energy) constraints
and between the bounds on the range, specified by ρmin and ρmax. The admissible region
is interpreted probabilistically, and an equivalent Gaussian mixture representation is de-
veloped in order to apply a Gaussian mixture estimation algorithm to the problem of IOD.
The general methodology for developing the Gaussian mixture representation is based on
the observation that, given the admissible region and no additional information, no single
combination of range and range rate can be said to be more probable than any other com-
bination. In probabilistic terms, this means that the admissible region can be described by
a two-dimensional (2-D) uniform distribution. The authors developed a method by which
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2.1 Admissible Region

Fig. 2.7 – Region of admissible combin-
ations of range and range-
rate which permit Earth or-
biting object. (DeMars and
Jah, 2013)

Fig. 2.8 – Region of admissible combin-
ations of range and range-
rate subject to semimajor
axis and range constraints.
(DeMars and Jah, 2013)

a univariate uniform distribution can be approximated by a Gaussian mixture probabil-
ity density function (PDF) and applied it to the admissible region in order to formulate a
probabilistic IOD solution.

Extension of Bayesian admissible region approach

Fujimoto et al. (2014) define the AR as a probability density function (pdf) constrained in
the range ρ and range-rate ρ̇ directions via a few physical criteria such as that the orbit is
elliptic, the object’s range is within the sensing capabilities, and so on. Probability density
function is a function that provides the likelihood that the value of a random variable will
fall between a certain range of values. The angle and angle-rate, nominally in right ascension
α and declination δ, at the epoch of a tracklet are estimated via a least-squares fit of the
tracklet data to a polynomial model in time. These variables plus necessary parameters,
such as the latitude φ and longitude Θ of the observation point, are referred to collectively
as the attributable vector (Maruskin et al., 2009). Thus, each point on the AR combined
with the attributable vector corresponds one-to-one with a state that the observed object
may have taken. Furthermore, the covariance from the least-squares fit may be incorporated
in the AR to represent observational errors. The admissible region is a uniform probability
density function (pdf) whose support is a compact set. Multiple ARs may be propagated to
a common epoch and an a posteriori pdf computed based on Bayes’ rule.

Suppose that, given some set of criteria C, A is a compact set in state space X that meets
C. Then, the AR FC [X(t0);Y 0] is a pdf over X assigned to an attributable vector A such
that the probability p that the observed object exists in region B ⊂ A at time t0 is

p[X(t0)] =

∫
B

(FC[X(t0);A0] dX0
1dX

0
2...dX

0
n) (2.17)

where X(t0) ∈ X and
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X(ti) ≡X i = (X i
1X

i
2...X

i
n). (2.18)

Note that Fujimoto et al. (2014) impose
∫
A
FC[X(t0);A0]dX0 = 1. Fig. 2.9 is an example

of an AR, refer to their paper to see the criteria C. These criteria ensure that the AR
encompasses most trackable object relevant to SSA while simultaneously filtering out highly
eccentric orbits. Note that changing C allows one to be explicit about the types of orbits that
are included in the analysis. For example, if the observer is only interested in identifying
objects in and near the GEO belt, C may be modified accordingly.

It is important to add the observational errors for this methodology otherwise two potential
difficulties are anticipated with the assumption that these errors are small enough to be
ignored. The first is that the zero-error assumption causes missed associations especially
when the state space discretization is refined. The second is the ambiguity in the number
of revolutions the observed object potentially made between two tracklet pairs leads to a
large number of associations. The addition of observational errors would make the AR, in
principle, 6-dimensional. Fujimoto and Scheeres (2012) showed that the uncertainty in the
attributable vector has a small effect on the discretized admissible region map and that the
2-D assumption is justified for several days but only if the discretization of the state space
is coarse (∼100 km resolution in semimajor axis, ∼ 5 in mean anomaly). Fujimoto et al.
(2014) investigate how appropriate the 2-D assumption is for finer state space discretizations.
Gaussian observation errors of σ = 2 arcsec in both α and δ are considered up to 3σ. It
was found that ignoring these errors may not be justified for fine discretizations of the state
space. The Bayesian and least-squares estimator hybrid approach for association is explained
in the next section.

Fig. 2.9 – An admissible region for attributable vector Y = (α, δ, α̇, δ̇, φ,Θ)

- 34-



2.2 Tracklet Correlation

2.2 Tracklet Correlation

As mentioned earlier, the tracklets contain incomplete state information and cannot be used
alone to calculate an orbital solution. Hence, they are correlated against other tracklets,
i.e. tested if they belong to a common object. After a successful association, the tracklet
pairs provide enough information to determine the full orbital state. In the past years, dif-
ferent methodologies to perform this association and initial orbit determination have been
developed. Due to the incomplete state information from a tracklet, many research stud-
ies make a hypothesis over unknown variables and carry out a search in their predefined
admissible region of interest. The previous section described how some of the researchers
defined the admissible regions. The next step is the association of tracklets and initial orbit
determination. The following section will briefly summarize the different types of tracklet
association techniques in the context of earth-orbiting space objects.

2.2.1 Approximation using an initial circular orbit

The AIUB has been conducting several search campaigns for space debris in the GEO region
for ESA. During these surveys a substantial population of unknown, small-sized objects was
found (Schildknecht et al., 2001). Musci et al. (‘Orbit improvement for GEO objects using
follow-up observations’) propose determination of circular orbits for all the objects using the
discovery observations. The period between the first and the last observation of an object
(from now on called ‘observation arc’) lies between 30 s and 3 min. If only two observations
are available, only four of the six Keplerian elements can be determined. For objects in
GEO a circular orbit was considered to be a good approximation of the true orbit (see
section 1.2.2). Thus the eccentricity is e = 0 and the argument of perigee ω may be selected
arbitrarily. The orbit parameters are determined with the method of least squares for three
and more observations. After the initial orbit determination of a circular orbit a general orbit
improvement process is involved using all observations if follow-up observations are available.
They showed that two follow-up observation sequences during the same night are necessary
and sufficient for a successful recovery of newly detected GEO objects after a few nights.
The resulting improved elliptical orbits represent the “true” orbits with sufficient accuracy.
The arc covered by all observations should, however, be long enough (a few hours). The
actual length depends somewhat on the eccentricity. A “secure” orbit can be determined
based on an observation arc of a few days. Such orbits may be used to build up a catalogue.

2.2.2 Mapping object’s state into Delaunay elements

Maruskin et al. (2009) extract the maximum amount of usable information from a single
tracklet of a space object and also bound the possible domain of the unmeasured state
components. They use this information to correlate one observation tracklet with another
from a previous observation to detect whether the two objects are the same. The idea is
to use the multiple angular measurements to develop an improved estimate of the angular
location of the object and the angular rate of the object, and then use these measurements to
constrain the unmeasured states of the object. This approach was also proposed in (Tommei
et al., 2007); (Milani and Knezevic, 2005) and it is further extended in the research of
Maruskin et al. (2009). There is not enough information in a tracklet to provide an accurate
orbit. To capture this additional information, Maruskin et al. (2009) estimate the space
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object’s angular location, angular rate, and angular acceleration at a fixed epoch, chosen
within the tracking pass. This approach recognizes that there is little information in one
tracklet related to the object range and range rate, and concentrates on fixing the angles,
angle rates, and angle accelerations to a higher level of precision. The concept for admissible
region used is briefly described in section 2.1.2.

Given two extended attributable vectors A1 and A2 one determines the corresponding
admissible regions C1 and C2, respectively. These admissible regions cannot be compared
directly, as they are subsets of two different sets of topocentric spherical coordinates, affixed
to the Earth at different locations and different times. The admissible region is pushed
forward to Delaunay Space and both the uncertainty distributions are dynamically evolved
or regressed in time to a common epoch t so that F t

AC1 and F t
AC2 are both two dimensional

sub manifolds of six dimensional Delaunay space, dynamically mapped to a common epoch.
If A1 and A2 correspond to the same object, then F t

AC1 and F t
AC2 must necessarily intersect.

Because A1 and A2 each contain four pieces of information (two angles and two angle rates),
the system is overdetermined. Unless there is some redundancy in the information, if both
tracks correspond to the same physical object, it is likely that the uncertainty manifolds
F t
AC1 and F t

AC2 will intersect at a single point.

To obtain the unique intersection point, they use an algorithm called Intersection Theory
Analysis (ITA) (Maruskin et al., 2009). They test this algorithm on different types of
observations.

2.2.3 Correlation using probability distributions

The direct Bayesian admissible region approach proposed by Fujimoto and Scheeres (2012)
is an a priori state free measurement association and IOD technique. The technique consists
of correlating multiple optical observations by means of probability distributions defined by
the admissible region expressed in Poincaré orbit element space. If the correlation process
results in a positive result, an initial estimate for the orbit is immediately obtained. First,
the admissible region, as well as other necessary concepts, are introduced and defined math-
ematically (see section 2.1.2). One of the goals of this work was to know the probability
of an optically observed object, characterized through the attributable vector A, being in
the vicinity of some coordinate X in a standard comparison space such as the Poincaré or-
bit element space. This probability could be calculated for various values of X across the
comparison space, so it is thought of as an element of a probability density function (pdf).
However the attributable vector contains only four variables (α, δ, α̇, δ̇) regarding object’s
position and velocity. Therefore, it is necessary to combine multiple observations of the
object. It is also important to know whether some incoming data, such as new observation,
are related with the aforementioned pdf, and if so how it affects the pdf.

They use data sets S1 and S2 regarding Earth-orbiting objects and their observations. Set
S1 contains past observation data and debris distribution models. S1 is used as a background
pdf that filters out unrealistic solutions. Set S2(A) contains the distribution of Virtual
Particles (analogous to Virtual Debris in section 2.1.2) over the standard comparison space.
S2 is used to represent the information from each observation. Very large number of Virtual
Particles (VPs) are mapped nonlinearly to completely represent the admissible region in 6-D
space.

Although VPs are, by definition, uniformly distributed in the admissible region (i.e.,
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range/range-rate space) for common choices of the comparison space, such as orbit ele-
ment and Poincaré spaces, the distribution of VPs in such spaces is non-uniform, due to
the nonlinearity of the mapping of the AR. As a consequence, certain values of X become
more likely than others. The data in this category are continuous and are a function of A.
Computationally, however, a large and discrete sample set (S̃2) is used instead.

The standard comparison space is discretized into six-dimensional hypercubes (or “bins”),
indexed with vector i. By doing so, TLE objects, modeled debris, and VPs with similar
orbital characteristics are grouped together. In the discretized comparison space, objects in
a particular bin are spatially indistinguishable, i.e. their coordinates are treated as being the
same as those that define the position of the bin. The discretization makes up for deficiencies
in S1 data, undersampling of S̃2, and any additional uncertainty due to observation and
modeling error, and it speeds up computational turnaround. The precision of the method is
limited by these deficiencies and uncertainties as well as multi-revolution solutions (Fujimoto
and Scheeres, 2012).

With discretization the data in S1 and S2 are considered discrete pdfs spanning the com-
parison space. These pdfs are referred to as s1(i) and s2(i, A), respectively (both are mapped
to bin i). Suppose that there exists some prior discrete pdf gO(i, τ) that describes the prob-
ability that a particular object of interest O is consistent with bin i at epoch τ . That is, if
P is a probability measure and EO(i, τ) is an event where O is consistent with i at time τ ,
then

P [EO(i, τ)] = gO(i, τ). (2.19)

g can originate from the TLE catalog or a debris distribution model (S1), one observa-
tion or a set of observations that are believed to be correlated a priori with O(S2), or any
combination of S1 and S2. Here, i is treated as a random variable that spans the bin index
space. All elements have been propagated to τ .

Considering a new series of information {r} from S1 or S2, such as uncorrelated observa-
tions, the aim is to calculate a posterior pdf hO(i, τ) on whether O is consistent with bin i
and is related to {r}. If the new information does not regard O, hO(i, τ) = 0. Let f{r}(i, τ)
be the pdf that describes the probability that {r} is consistent with bin i and event xOr be
one where the series {r} is related with O. The latter event is added as a condition to h,
using Bayes’s theorem the posterior pdf is,

P [E{O}(i, τ)|xOr ] =
f{r}(i, τ)gO(i, τ)∑
f{r}(j, τ)gO(j, τ)

(2.20)

where the sum in the denominator is over all bins. In a graphical sense, pdf h is a cutout
of the region where f and g intersect; h > 0 for any bins where both f > 0 and g > 0, and
the probability expressed by h is one that is evaluated over this overlap region. Based on
map of admissible region into Poincaré space, one can look at whether h > 0 for some bin
i to deduce with confidence whether or not the new information is related to the object of
interest.

The method proposed here however, requires mapping a large number of VPs from ρ/ρ̇
space to, say, Poincaré space to ensure accuracy. Attempting to exactly map these points
can be computationally expensive. A way to linearize this problem was shown, in the linear
method. A smaller sample of S2 which is defined as S̃2 is used and only these points are
mapped exactly. Again, S̃2, is uniform over (ρ, ρ̇) space. Consider one element of S̃2 located
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at (ρ∗, ρ̇∗) in (ρ, ρ̇) space and X∗ in the comparison space. Then, to first-order accuracy,
some point (ρ, ρ̇) in the vicinity of (ρ∗, ρ̇∗) is mapped to comparison space as

X = X∗ + δX ≈ X∗ + Φ(δρ, δρ̇) (2.21)

In Eq. (2.21), δ denotes a small deviation and Φ is the linear map from (ρ, ρ̇) to comparison
space.

Fig. 2.10 – Three-dimensional representation of the linear mapping process. The dashed lines
represent the boundaries of the bins. The curved surface is the admissible-region
map, and the small sectioned plane is a portion of the admissible region mapped
to comparison space about the asterisk. The plane cuts through four bins; sections
belonging to different bins are distinguished by the shading.

The algorithm based on the concept described above, determines the bins that one linear
map of a bounded region in the admissible region fills. Fig. 2.10 is a diagram of the direct
map of the admissible region, the linear map of a segment of it, and the bin structure in
3-D space. The linear map will remain a two-dimensional plane in the full six-dimensional
problem. The goal now is to find how much the linear map fills each bin that it cuts
through: that is, to solve for the area that the linear map occupies in each bin. Taking
equal area regions in the admissible regions, all linear maps contain the same number of
VPs. Therefore, regardless of the total area of the linear map, the area of a segment of it is
directly proportional to how many VPs are contained in the segment. The total VP density
in a particular bin is the sum of the areas of all linear map segments that reside in it. The
VP density distribution, or equivalently, the probability distribution function is found by
normalizing these sums over all bins.

The true state is included in the region in state space where h > 0. Therefore, the
state estimate is good. On the other hand, when two observations are of different objects,
h = 0 for the entire state space, which allows one to conclude that the two observations are
unrelated. An implementation of the method in MATLAB successfully correlated 996 optical
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observations and provided good initial orbit estimates. Observation errors were deemed to
have a small effect on the accuracy of the correlation procedure. However, two limiting cases
were examined: one where orbit estimation accuracy is compromised if the time between
observations is short and another where false correlations may occur if objects in a satellite
constellation are observed.

2.2.4 Correlation using Bayesian and Least Squares hybrid approach

Fujimoto et al. (2014) propose a hybrid approach that takes the tracklet association and ini-
tial orbit determination results of the probability distribution method defined in the section
above and passes them to a least squares estimator. The least squares step ensures good
estimate precision without having to use a fine discretization of the state space, minimizing
negative effects of measurement error on tracklet association using ARs. Suppose that for n
pairs of samples y1, . . . ,yn each associated respectively to independent variables x1 , . . .
,xn, the samples are modeled with a simple linear regression model as

ŷi = β̂0 + β̂1xi, (2.22)

for all integers 1 ≤ i ≤ n, where the hat symbolizes that it is a model estimate. Then, for
the hypothesis test regarding slope parameter β1

{
H0 : β1 = 0

H1 : β1 6= 0,
(2.23)

where H0 is the null and H1 the alternative hypothesis, the probability of falsely rejecting
H0 is set to be pmin. Through this step, a maximum bound is effectively set for β1 itself,
meaning the residuals must be unrelated to time in a linear sense for a tracklet pair to be
associated with a state estimate.

First, the time history of right ascension and declination must be converted into an attrib-
utable vector at the tracklet epoch; i.e. a single set of angles and angle-rates. The measured
angles are fit to a polynomial kinematic model in time, such as for the right ascension

α(t) = α0 + α̇0(t− t0) +
1

2
α̈0(t− t0)2, (2.24)

where superscript 0 denotes the state at the tracklet epoch. Next, admissible regions are
computed for each attributable vector in the Poincaré orbit element space. As discussed
in (Fujimoto and Scheeres, 2012), the admissible region is divided into subsets (units of
discretization in the range-direction × units in the range-rate) and each subset linearly
extrapolated. The Poincaré space, and consequently the ARs, are discretized. The admissible
regions are propagated to a common epoch, which is chosen to be the tracklet epoch of the
first tracklet, under two-body dynamics. The correlation takes place as described in the
section above, the least square filters are run. The reference state of each filter is the
centroid of the bin where h > 0. For the filter to converge, the RMS of the (observed -
computed) residuals for both the right ascension and declination over all tracklets processed
should be less than some maximum.
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2 Initial Orbit Determination

2.2.5 Admissible region bounds for track initiation

Schumacher et al. (2013) propose a type of admissible-region analysis for track initiation in
multi-satellite problems when angles are the primary observable. For a specified rectangular
partition in the space of orbital elements, they present explicit upper and lower bounds,
and other constraints, for the values of range and range rate that will lead to initial orbit
hypotheses (data association hypotheses) associated with that partition.

Given a pair of line-of-sight unit position vectors ui and uj, measured at time ti at station
position Ri and time tj at station position Rj, respectively, the aim is to test the hypo-
thesis that these two observations are associated with the same space object. The authors
attach a set of hypothetical range values, {ρi,m,m = 1, 2, ...} and {ρj,n, n = 1, 2, ...}, re-
spectively to each of these measured unit vectors, then generate candidate orbits by solving
Lambert’s problem for each of the pair-wise combinations of hypothetical orbital position
vectors ri,m = Ri + ρi,mui and rj,n = Rj + ρj,nuj. In principle one can consider all possible
pairs of observations and solve the family of Lambert problems for each pair. Then each
hypothetical orbit from the solution of Lambert’s problem is a data association hypothesis
that must be either confirmed or eliminated through comparisons with other observational
data.

In order to limit the range hypotheses, the authors only seek to generate the hypotheses for
the orbits that lie in a bounded region of semimajor axis element a, eccentricity e, inclination
I and right ascension of ascending node Ω, namely, within a partition of the element space by
the intervals [amin, amax], [emin, emin], [Imin, Imax] [Ωmin, Ωmax]. By constructing upper and
lower bounds on range for each measured line of sight for each partition of the element space,
one limits the number of range hypotheses that have to be considered for each partition. This
approach allows one to consider a manageable number of range hypotheses for each partition,
simply by making the partitions small enough.

The authors also use the minimum eccentricity and minimum semimajor axis solutions of
the Lambert’s problem to restrict the ranges. The eccentricity of the orbit of least possible
eccentricity that goes through a given pair of position vectors can be computed solely in
terms of those position vectors (Prussing and Conway, 1993).

0 ≤ e0 =
|(||r1|| − ||r2||)|
||r2 − r1||

≤ 1 (2.25)

Likewise, semimajor axis of the orbit of least possible semimajor axis that goes through
the pair of positions can be computed solely in terms of the position vectors. If a0 > amax
or e0 > emax, then reject the range hypothesis pair without solving Lambert’s problem.

4a0 = ||r1||+ ||r2||+ ||r2 − r1|| (2.26)

In case the observations include, or allow one to derive angle rates, one can deduce addi-
tional bounds on the possible values of the range. Most importantly, with an accurate angle
rate, the track initiation job scales linearly with the number of observations rather than the
square or cube of the number of observations. The problem also scales linearly in the number
of range hypotheses as well as in the number of range rate hypotheses. One could hardly
expect to do any better than this in solving a large track-initiation problem using optical
data (Schumacher et al., 2013).

µ

amax

(
1− emax
1 + emax

)
≤ ||ṙ||2 ≤ µ

amin

(
1 + emax
1− emax

)
(2.27)
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2.2 Tracklet Correlation

Fig. 2.11 – Overlapping range-range
rate allowable regions.

Fig. 2.12 – Admissible region with
emin = 0.03.

The maximum perigee velocity and minimum apogee velocity inequalities produce regions
in the range-range rate plane which satisfy the selected partition of semimajor axis and ec-
centricity for the given angle and angle rate observation. The velocity magnitude is required
to be between the maximum perigee speed and minimum apogee speed. The region in (ρ, ρ̇)
plane implied by these inequalities is shown in Fig. 2.11. It should be noted that the perigee
condition is satisfied within an elliptical region whereas the apogee condition is satisfied
outside a similar region. If a given observation was to form a pair of regions which had no
overlap, then that observation would not lie within the selected element partition and could
be eliminated from consideration. An example of admissible region is shown in Fig. 2.12, it
explicitly reflects the emin constraint.

Because the bounds are conservative to some extent and not exact, some values of range
and range rate that lie within the bounds given here will lead to candidate orbits that lie
outside the specified partition of the element space. This fact leads to some inefficiency in
the parallelization of the initial orbit hypotheses over the whole element space. Essentially,
nearly duplicated candidate orbits may be generated near the boundaries of the specified
partitions and would therefore have to be identified and merged later in the tracking process.
Although the detection and merging of duplicate tracks must always be done in any multiple-
hypothesis tracking implementation, the inefficiency of the range and range rate bounds
necessarily increases the size of that task. The actual cost of this inefficiency in particular
problems will depend on the observation sets, the element partitions of interest and the range
/ range-rate sampling strategy, and may need to be studied if the scenario is computationally
stressing. On the other hand, all the orbits within an element-space partition correspond to
values of range and range rate that do lie within the bounds given here, so that no candidate
orbits will be missed merely through this choice of bounds.

2.2.6 Statistical Ranging

A new orbit determination method, the statistical ranging was presented by Virtanen et
al. (2001), which is applicable to poorly observed single-apparition asteroids having two
or more observations. A Monte Carlo technique that makes use of Bayesian a priori and
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a posteriori probabilities is used. First, they select two observations randomly from the
full set of observations. Second, they introduce angular deviations in right ascension and
declination and assume topocentric ranges. Then, they compute sample orbits from the two
heliocentric rectangular coordinates available. Optionally, one can make use of preliminary
orbits obtained from one of the conventional methods to constrain the volume of phase space
to be searched.

Their analysis shows that the linear approximation in the differential correction can
severely break down in the case of very short observational arcs or small numbers of ob-
servations. The new statistical ranging method allows one to examine the orbital element
phase space for possible orbits even in the most indeterminate cases. Results for poorly
observed main-belt asteroids imply that orbital classification based on a single initial orbit
is by no means an unambiguous task. The preliminary results indicate that the Bayesian
approach can be useful in orbit determination for newly discovered asteroids. In partic-
ular, incorporating a priori information allowed them to distinguish between realistic and
unrealistic orbit solutions.

2.2.7 Statistical Correlation of Observations

Another approach followed by Schneider (2012) uses the Markov Chain Monte Carlo (MCMC)
method to sample distributions of orbit parameters describing the correlation between the
tracklets. Rather than combining the observed angular positions at closely spaced times
into a single estimate of angle and rate, all the angular positions are used to constrain the
parameters of the orbit model for the observed object. The tracklet linkage is based on the
overlap between probability distributions of the orbit model parameters. The model defines
a matrix Norb x Ntrck where Norb and Ntrck are the number of orbits and tracklets respect-
ively. The MCMC method finds the most likely matrix (best tracklet combinations), i.e. the
best global solution, instead of performing tracklet pairwise checking.

An upside of using this method is that it looks for the best global solution, instead of
pairwise checking every tracklet with every tracklet. But a few downsides to this method
can be pointed out as well. Already for a simple problem (3 tracklets) about 500,000 samples
are needed. This involves a significant amount of computing power or time. Another point to
be made is that the method is very complicated, certainly when compared to the admissible
region approaches. A lot of parameters have to be tuned for this method to work, such as a
priori distributions.

Besides this, a common problem with Markov chains is that they can display unexpected
convergence behaviors and it is difficult to find a control break criterion. For example, in
the example considered by Schneider (2012), the chains occasionally get “stuck” at a single
parameter value for many consecutive steps.

2.2.8 Multiple Hypothesis Tracking

Another group of authors, including DeMars and Jah (2013), Singh et al. (2013), Gadaleta
et al. (2012), pursued a slightly different way that brings towards a Multiple Hypothesis
Tracking (MHT) paradigm. Instead of choosing a different space (e.g. Poincaré), DeMars
and Jah (2013) and other authors (Hussein et al., 2014) solve the problem of discretization
using a Gaussian Mixture Model to weigh the ρ/ρ̇ hypotheses within the admissible region.
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The comparison of the attributables to evaluate the tracklet association is a covariance-
weighted difference. There are several functions that can be used for the computation of
this difference. One of the well-known functions is the Mahalanobis distance. In Hussein
et al. (2014), Singh et al. (2013), further possible functions are indicated and a general
explanation of the MHT principles is given. The MHT method is the natural extension of a
pairwise tracklet correlation (usually two tracklets at two different epochs) to a correlation
with three or more tracklets. However, in practical applications for performance reasons,
it is not possible to process the tracklets at all (more than two) epochs simultaneously.
Instead, the correlation is solved sequentially, over a sliding window. As a consequence,
the decision to correlate two tracklets can be postponed and taken later on the basis of
additional measurements. The positive side of MHT is the capability to associate more
than two tracklets to an object, thus postponing the definitive correlation. This helps to
identify false alarms and will decrease the number of false associations between tracklets.
Therefore, this method will lead to a significant increase in performance when applied to an
environment with a high density of targets. The drawback of using MHT algorithms is the
required computational cost. Note that the correlation of three or more tracklets leads to a
so-called NP-hard problem, which can not be solved in polynomial time.

2.3 Benefits and drawbacks of different approaches

The benefits and drawbacks of the different methods are summarized according to the fol-
lowing criteria:

• Performance: The number of calls in the algorithm determines the time needed to
find the correlation solutions. In general, it is possible to distinguish between methods
doing a loop over all possible samples (regular grid testing) and others where the
search in the sample space follows a certain rule (optimization), e.g. gradient descent
search. Those methods which do not use attributables have in general more loops
that consider also the single observations. If MCMC is used, an even higher number is
needed for the Monte Carlo sampling. The methods that try to associate more than two
tracklets simultaneously also need further developments to improve their correlation
performance. These criteria lead us to assess the limitations of the algorithms such as
Statistical Ranging, Statistical Correlation of Observations and Multiple Hypothesis
Tracking.

• Multi-rev problem: The methods based on attributables cannot solve the ambiguity in
the number of revolutions the observed object potentially made between the tracklets.
The two-body boundary-value problem has potentially multiple solutions due to the
ambiguity in the anomalies. With an increasing number of revolutions, more multi-
revolution solutions become physically feasible. An extreme case is given if the object is
observed two times at the same location. Then, there are multiple solutions with equal
angular rates but different semimajor axis values. The ambiguity can be removed
with a prefilter, which was applied in the boundary approach by (Siminski et al.,
2014). A least-squares refinement can also be used to eliminate the ambiguity as is
the case for the approaches proposed by Musci et al. (‘Orbit improvement for GEO
objects using follow-up observations’) in subsection 2.2.1 and Fujimoto et al. (2014) in
subsection 2.2.4.
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2 Initial Orbit Determination

• Perturbations: In general the perturbation forces can be included in the model used
for the orbit propagation. In the boundary value approach, the traditional solutions
to the Lambert problem typically only account for two-body dynamics. This difficulty
can be circumvented by using numerical orbit models and modern shooting methods.
For all methods, it is anyway possible to take into account perturbations in the least-
squares refinement. However, none of the methods mentioned in this section include
perturbations in the initial orbit determination step.
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orbit determination method

Orbit determination of newly detected objects is critical for space debris cataloging. If
the tracklet association algorithm is not robust enough many work hours will be required
to determine the orbit manually. A least-squares estimator is a popular choice due to its
ability to provide both a maximum likelihood state estimate and the uncertainties of each
dimension of that state. In space debris tracking the least-squares method is used extensively.
However, a minimum number of observations are required for the least-squares estimator
to work robustly. In general, the minimum number of observations needed for a least-
squares estimator to work is greater than the number of parameters that are being estimated
(Zittersteijn, 2017). This is due to the typical observation strategies that are used in space
debris tracking. An object is often observed in very short arcs of several observations.
Since each short arc of observations only constrains a small portion of the object’s orbit
(typically about two to five minutes of a 24-hour orbit for a GEO object) the orbit is not
well constrained, even if the total number of observations might suggest otherwise.

An Initial Orbit Determination (IOD) method is used to provide an initial orbit robustly
with a small number of observations. This initial orbit can then be used as an initial value
in the least-squares estimator to further improve the orbit estimate if necessary. Apart from
being robust the IOD method should also provide a consistent indicator of the quality of
the orbit. IOD is a topic that has been addressed extensively. Some of the IOD methods
were described in the previous chapter. Although these methods are interesting, many do
not exploit the observation strategies of space debris to achieve the goal.

3.1 Introduction to OBVIOD

In this work, a new IOD method is developed called the Shooting-Bisection Optimized
Boundary Value Initial Orbit Determination (Shooting-Bisection OBVIOD) method. It re-
lies heavily on previously developed work on the optimized boundary value problem (Siminski
et al., 2014). The latter proposed an orbit determination method using available information
of two tracklets. This approach works with a boundary-value formulation and uses an op-
timization scheme to find the best fitting orbits (OBVIOD). It solves the Lambert problem,
a special case of the orbital boundary value problem, which consists of two-position vectors
at separate epochs. The IOD in OBVIOD provides an unperturbed solution. To add per-
turbations in the IOD, a so-called Shooting method is proposed in this work. The following
section will explain the OBVIOD method proposed by (Siminski et al., 2014).

An initial-value method was also proposed by the authors before choosing the boundary
value approach due to the former’s limitations. In the initial-value technique, while augment-
ing the tracklet information from the first observation epoch with the two free parameters
(ρ1, ρ̇1), a full state is defined
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ŷ(t1) =

(
r(ρ1)
ṙ(ρ1, ρ̇1)

)
, (3.1)

which can be used as an initial value to numerically or analytically integrate the equation
of motion to the second epoch. Consequently, the solution ŷ(t2) can be computed. The hat
over the state variable indicates that the orbital solution is a hypothesis and not necessarily
the true one. The observation arc at the second epoch t2 serves as a discriminator to decide
whether a hypothesis is accepted or rejected.

A loss function is minimized which describes the difference between the actual second
observation a2 and the modeled value â2. As the measurements are affected by noise, the
difference in the loss function is scaled with its uncertainty. The loss function is then given
by

L(p) = (a2 − â2)
T (C â2 +Ca2)

−1(a2 − â2), (3.2)

where the range and range-rate hypotheses are combined in p = (ρ1, ρ̇1) for convenience
and

â2(a1,p) = (α̂2, ˆ̇α2, δ̂2,
ˆ̇δ2)

T , (3.3)

is the propagated modeled observation obtained from y(t2). The covariance matrix Ca2

describes the uncertainty of the second measurement andC â2 is the propagated covariance of
the initial measurement. The topography of the loss function for the parameters p = (ρ1, ρ̇1)
is illustrated in Fig. 3.1, where the same geostationary object is re-observed after 3.75 days.
The semimajor axis and orbital period stay constant on the dashed lines. The numbers in
brackets denote the range of revolutions k (in orbital periods) in the enclosed regions. The
true solution is in the range k ∈ [3.5, 4].

Fig. 3.1 – Loss function for initial-value method with range and range-rate as the free paramet-
ers. The same geostationary object at the longitude 10 degrees has been re-observed
after 3.75 days.
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The topography of the loss function has been analyzed in (Siminski et al., 2013b) to assess
the suitability for computational optimization methods. Several hills and valleys can be
observed and, consequently, several local minima inside the valleys can be found that are
potential candidates for a common orbit solution of the two measurement arcs. This results
in a multi-modal optimization problem and makes it difficult to find a global minimum
within the admissible region. The individual valleys must be identified beforehand. They
are roughly separated by allowing only a specific range of orbital revolutions k between the
observation epochs. However, multiple valleys inside the bounds can still be observed and this
separation can lead to very narrow regions as observed in Fig. 3.1, which is disadvantageous
for iterative search algorithms as these might step outside the feasible area too easily. An
appropriate alternative parameter system has been therefore proposed in Siminski et al.
(2013a) to account for the difficult topography. The semimajor axis a1 and a relative range
ρ̃1 at the first epoch are used as the free parameters. The derivation and description of the
new parameters can be obtained from Siminski et al. (2013b).

The topography of the loss function for the new set of parameters is illustrated in the
following Fig. 3.2. It shows a more suitable pattern for optimization algorithms. The
representation allows one to split the loss function into rectangles with the same number
of orbital revolutions. Even though most valleys have been successfully separated from
each other, several hills and valleys inside an orbital revolutions range can still be seen.
Larger time gaps lead to more ambiguous solutions. Consequently, the time gap between
observations is shown to be important when sectioning the region. Future research must
find ways to identify the different valleys inside such a range. If the location or extent of all
valleys is known, each one can be individually minimized using a gradient-based optimizer.

Fig. 3.2 – Loss function for initial-value method with semimajor axis and relative range as
the free parameters. The same observations are used as in the previous Fig. 3.1.
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3.2 Working in OBVIOD

Instead of parameterizing the problem at the initial epoch only, more symmetric approaches
have been developed that use the boundary-value formulation to define a state hypothesis.
The methods mentioned in subsection 2.2.5, subsection 2.2.7, statistical ranging from sub-
section 2.2.6 were examples of such approaches. The line-of-sight information at both obser-
vation epochs

z = (α1, δ1, α2, δ2)
T (3.4)

is used to constrain the state of the tested hypotheses. A complete orbital state is then
defined by augmenting the line-of-sight information with unknown range values at both
epochs (ρ1, ρ2). Siminski et al. (2014) introduced a method where an optimization scheme
is used to identify tracklets of common objects. The angle measurements consist of series
of α and δ values. Linear regression is performed over these series, resulting in average α,
δ values and the corresponding α̇, δ̇ for a meantime. Using the attributable vectors over
simple measurements provides an advantage as the angular rates information is now avail-
able. Moreover, the mean angular positions, rates obtained from the linear regression will
have higher accuracy compared to the raw observations. The next step involves a range
hypothesis, which is used with the line of sight vectors and station positions to compute
position vectors. The Lambert’s problem is solved, giving velocities at both epochs. The an-
gular rates obtained from the previous step are compared with the ones from the attributable
vector using a loss function. The latter is based on the difference between the measured and
the modeled angular rates scaled by the uncertainty. In this case, the Mahalanobis distance
(MD) is used as the loss function. For a distribution y, with mean y and covariance matrix
Cy, the Mahalanobis distance for each point yi is defined by:

DM(y) =
√

(yi − y)TCy
−1(yi − y) (3.5)

A minimization algorithm called Broyden Fletcher Goldfarb Shanno (BFGS) is used to
search for the loss function minimum. Press et al. (1992) briefly explain the working of this
algorithm. If the MD is below a certain threshold, the tracklets are said to be correlated.
In other words, they belong to the same object. The range hypothesis corresponding to the
minimum is accepted and the initial orbit is computed for these tracklets. Fig. 3.3 shows
the schematic of OBVIOD.

The topography of the loss function for the free parameters p = (ρ1, ρ2) is illustrated in
Fig. 3.4, 3.5 and 3.6 where the same geostationary object is re-observed after 3.75 days. The
numbers in brackets denote the range of revolutions k (in orbital periods) in the enclosed
regions. The true solution is in the range k ∈ [3.5, 4]. Three individual discrete cases of the
loss function defined by the allowed k interval have been created. In contrast to the initial-
value method, each discrete case of the loss function contains only one local and therefore
also the global minimum. The global minimum for the overall problem is then obtained by
identifying the value of k that yields the smallest loss-function minimum.
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Fig. 3.3 – Process Flow in OBVIOD.

Fig. 3.4 – Loss function for boundary-value method. The loss function is evaluated for differ-
ent ranges of allowed orbital periods k.

Fig. 3.5 – A local minimum can be seen for this value of revolutions.
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Fig. 3.6 – No loss function minimum is found for k ∈ [4, 4.5].

3.3 Lambert’s Problem

Lambert’s problem deals with the determination of a Keplerian orbit connecting two points
in space with a given time-of-flight and the direction of flight. The earliest formulations were
made by Lagrange (1788) and Gauss (1963). Over the years, different algorithms have been
proposed to solve Lambert’s problem. The most notable ones which have adopted universal
variables as a free parameter for computation are Lancaster (1969), Gooding (1990), Izzo
(2014), Bate et al. (1971), Battin (1999) and Shen and Tsiotras (2003). Lagrange (1788),
Thorne (2014) and Prussing (2000) chose semimajor axis while Herrick and Liu (1959), Bate
et al. (1971) use semi-latus rectum. A comprehensive analysis along with a collection of
references is provided in Torre Sangrà and Fantino (2015).

A Lambert’s problem is stated as the following (Bate et al., 1971): given two points P1

and P2 in space, the time-of-flight tf , and direction of flight, determine the Keplerian orbit
that takes a body from P1 to P2 in the given tf . Fig. 3.7 illustrates the geometry of a typical
Lambert’s problem. In the figure, P1 and P2 are two fixed points in the space, with radii of
r1 and r1, F is the primary focus, F ∗ is the fictitious focus, d stands for the chord which is
between P1 and P2, and θ is the transfer angle. The problem is to determine the Keplerian
orbit such that a body is at P1 initially and must arrive at P2 at a specified time which is
denoted by tf . The triangle FP1P2 is often referred to as the space triangle.

According to Lambert’s theory (Battin, 1999), the time-of-flight is a function only of the
semimajor axis of the transfer orbit, the sum of the radii r1 + r2, and the chord length d,
i.e.,

tf = f(a, d, r1 + r2). (3.6)

From this description, the input quantities are defined as r1 and r2, the force of the central
point described by the central gravity coefficient µ, and the length of the orbit arc ∆t. The
angle θ is the angle between the vectors r1 and r2 and can be between 0 and 2π. If the ∆t
is large enough, more than one solution is possible. These additional solutions are called
multi-revolution solutions and they occur in pairs. The number of revolutions is denoted by
N. Therefore the output quantities are 2N + 1 solutions, each consisting of a radial velocity
Vr and a transverse velocity Vt at epoch t0 and t1.
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Fig. 3.7 – Geometry of the Lambert’s problem (Zhang et al., 2010).

In order to find a solution to this problem, an iterative procedure is needed. One parameter
needs to be defined on which to iterate. The choice of this parameter has a significant impact
on the quality of the solution. Since the semimajor axis a is directly related to the orbital
energy, it is a likely candidate as it will be relatively straightforward to derive the relations.
However, this would result in having solutions in pairs or no solutions at all (depending on
the geometry of the problem). Since at least one solution is required (and possible), this
parameter choice alone does not fulfill the requirements. Instead, a new parameter is defined
that is dependent on a. It is given in Eq. (3.7) (Gooding, 1990)

x2 = 1− s

2a
, (3.7)

where s is the semi-perimeter of the triangle FP1P2. The variable that is iterated can
vary from one Lambert problem solver to another. Although the parameter x performs well
(Lancaster (1969); Gooding (1990); Izzo (2014)), there is still a search for a parameter that
might improve the solution procedure, such as in Sun et al. (1987). If the length of the orbit
arc is expressed in a non-dimensional form as in Eq. (3.9), Fig. 3.8 is obtained. λ is defined
as

λ2 =

√
s− c
s

(3.8)

λ ∈ [-1, 1] is positive when θ ∈ [0, π] and negative when θ ∈ [π, 2π]. It is used by Izzo
(2014) along with M which stands for number of revolutions. Zhang et al. (2010) talk about
different possible Lambert solutions in terms of types of orbits. Given two points P1 and
P2 in space, there are two elliptic orbits with the same semimajor axes that connect the
two points. For a given Lambert’s problem, there are three orbit categories defined by the
location of the vacant focus (Zhang et al., 2010).

T =

√
8µ

s3
∆t (3.9)
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Fig. 3.8 – Time-of-flight curves parametrized using x for different λ and M values (Izzo, 2014).

1. The minimum-energy orbit is the one in which the vacant focus F ∗ lies on the P1P2

line segment. In this case, the semimajor axis of transfer orbit is

am =
s

2
, (3.10)

where

s =
r1 + r2 + d

2
, d = ‖r1 − r2‖, (3.11)

which is the length of the chord connecting P1 and P2.

2. For a > am, the short-path orbit is shown in Fig. 3.9

3. For the same value of a, the long-path orbit is also shown in Fig. 3.9

The vacant focuses in the short- and long-path orbits are F ∗short and F ∗long, respectively,
which are symmetric about the connecting line P1P2. As shown in Fig. 3.9, for a long-path
orbit, F and F ∗ lie on opposite sides of the P1P2 line segment, whereas for a short-path
orbit, F and F ∗ lie on the same side of the P1P2 line segment.
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Fig. 3.9 – Orbital geometry for Lambert problem showing long path, short path and vacant
focuses (Shen and Tsiotras, 2003).

From Lagrange’s formulation of the multiple-revolution Lambert’s problem, the relation-
ship between transfer time tf and semimajor axis a can be expressed as shown below:

√
µtf = a

3
2 [2Nπ + α− β − (sinα− sin β)], (3.12)

where µ is the gravitational parameter, N is the number of revolutions and α and β are
Lagrange’s parameters defined by

sin
α

2
= (

s

2a
)
1
2 ,

sin
β

2
= (

s− d
2a

)
1
2 .

(3.13)

Let cos−1(1− s
a
) = α0 ∈ [0, π] and cos−1(1− (s−d)

a
) = β0 ∈ [0, π], then from the geometric

interpretation of the variables α and β, two distinct cases are obtained:

1. If θ < π, then for the short path, α = α0 and β = β0, while for the long path,
α = 2π − α0 and β = β0.

2. If θ ≥ π, then for the short path, α = 2π − α0 and β = −β0, while for the long path,
α = α0 and β = −β0.

Zhang et al. (2010) discuss various constraints that can be possibly used to reduce the
number of practical solutions to be computed from a Multiple-Revolution Lambert’s Prob-
lem. These constraints were investigated, but the ranges of semimajor axis originating from
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them were found to be a subset of the constraints defined in section 4.3.1. However, the
constraints described in (Zhang et al., 2010) are more generic and could be tailored for
cases where the user could define the apogee, perigee limits for a specific mission and find
the solutions for a given orbital problem. The authors also mention about the relationship
between eccentricity and semimajor axis, interested readers could refer to their paper for
more details.

In Prussing (2000) a clear analysis of the multiple-revolution solutions to Lambert’s prob-
lem based on the classical Lagrange’s formulation is presented. It shows that for a given
Lambert’s problem, there are two N-revolution transfer orbits with N > 0 where N denotes
the number of revolutions, and there is only one zero-revolution transfer orbit. Therefore,
there are a total of 2Nmax + 1 solutions for a given Lambert’s problem, with Nmax being the
maximum number of revolutions allowed. In Prussing (2000), the Newton-Raphson iteration
scheme is used to solve for the 2Nmax + 1 solutions.

The next chapter will use the concepts described in the previous sections to discuss the
new methods developed. The behavior of an initial orbit determination method based on
Lambert’s problem is shown. Especially the limitations of the latter in multiple-revolution
scenarios and perturbed orbits.
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In the previous chapter the OBVIOD method was presented which uses an optimization
scheme to find the best fitting orbits from two short-arc tracklets. The IOD in OBVIOD
provides an unperturbed solution. In order to add perturbations in the IOD, a so-called
Shooting method is proposed here. The following sections will show the working of the
latter and the development of the present version of the algorithm.

4.1 Introduction to Shooting method

When ordinary differential equations are required to satisfy boundary conditions at more
than one value of the independent variable, the resulting problem is called a two point
boundary value problem. As the terminology indicates, the most common case by far is where
boundary conditions are supposed to be satisfied at two points — usually the starting and
ending values of the integration. However, the phrase “two point boundary value problem” is
also used loosely to include more complicated cases, e.g., where some conditions are specified
at endpoints, others at interior (usually singular) points.

The crucial distinction between initial value problems and two point boundary value prob-
lems is that in the former case one is able to start an acceptable solution at its beginning
(initial values) and just march it along by numerical integration to its end (final values);
while in the latter case, the boundary conditions at the starting point do not determine
a unique solution to start with — and a “random” choice among the solutions that satisfy
these (incomplete) starting boundary conditions is almost certain not to satisfy the boundary
conditions at the other specified point(s) (Zhang et al., 2010).

Acton (1970) talks about intelligent initial-value methods which can prove to be useful
in a strongly nonlinear set of algebraic equations, as the number of effective methods for
their solution is distressingly small. For the simplest boundary-value problem, the second-
order equation, one is given a boundary condition at each end of an interval. To treat it
as an initial-value problem one needs only to assume a second boundary condition at one
end, integrate via standard predictor-corrector techniques until one gets to the other end,
and there compare the value that one obtained with that which one desires. One can then
make an adjustment in their assumed initial value and integrate a second time, and compare
a second time. One’s third choice for the unknown initial condition can be guided by an
interpolative philosophy based on the two values they have already found at the far end of
the range. The process is strictly brute force, contains no particular booby traps, and will
ultimately succeed. On the negative side, it is a lot of work.
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4 Shooting method

Fig. 4.1 – Working of Shooting method (Press et al., 1992).

The Shooting method proves to be useful in these cases. It belongs to the class of two-point
boundary value problems. It treats the boundary value problem as an initial value problem.
It chooses an initial value of the dependent variable at the first boundary, propagates the
function to arrive at the other boundary. This solution is compared with the second boundary
value. Free parameters at the first boundary are adjusted to satisfy the desired second
boundary value. Fig. 4.1 shows how the different initial values of the dependent variable are
taken at the first boundary value in order to reach the desired boundary value.

4.1.1 Shooting method in OBVIOD

The boundary values in the case of Shooting-OBVIOD are angular measurements at both
the epochs. Using the attributable vector one has the mean angular positions and rates. The
range hypothesis is made for both the boundaries. The station position and velocity at both
the epochs is known, the only unknown parameter at the initial epoch is ρ̇1 (range-rate). It
is chosen as the free parameter inside Shooting IOD and is hypothesized at the initial epoch.
The orbit is computed at this epoch and propagated to the second epoch. The propagation
step involves perturbations such as solar radiation pressure, Earth’s geopotential terms, solar
and lunar gravitational forces.

Fig. 4.2 – Process flow in Shooting-OBVIOD.
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The iteration parameters inside Shooting-OBVIOD remain to be ρ1 (range at first epoch)
and ρ2 (range at second epoch). This is based on the analysis done by Siminski et al. (2014)
on the loss functions and performance.

The change of variables from (ρ1, ρ2) to (ρ̇1, ρ1) takes place inside Shooting procedure in
order to allow for a propagation from the initial epoch to the final epoch for the pair ρ1, ρ2.
This is because the Shooting method allows for IOD with the given pair with the addition
of perturbations. The Shooting IOD replaces the Lambert IOD during the minimization of
the loss function. The resulting schematic of Shooting-OBVIOD is shown in Fig. 4.2.

The OBVIOD algorithm uses line search inside the BFGS optimization to search for a
direction of descent in order to move towards the function minima. The line search approach
uses a variable stepsize for a (ρ1, ρ2) pair to search for a direction in which the loss function
value decreases in the consecutive step. This technique adds or subtracts the value of stepsize
from ρ1 and/or ρ2 to find the new pair of (ρ1, ρ2) that enables to iterate towards the loss
function minimum. Once a solution is found, the least-squares orbit improvement takes
place. If it results in a root mean square (rms) below threshold, that tracklet pair is said to
be correlated and the orbit is accepted.

The first boundary value of Shooting IOD is the state at initial epoch, hence the geocentric
position r1 and velocity ṙ1. Given the angular positions and angular velocities (α, δ, α̇, δ̇)
from measurements and ρ1, ρ2 from OBVIOD hypothesis the only remaining unknown is the
range-rate (ρ̇). The orbit is computed using α1, δ1, α̇1, δ̇1, ρ1 and ρ̇1. The range-rate at the
first boundary (ρ̇1) is chosen as a free parameter for the iterations. For a ρ̇1 hypothesis, the
initial state is computed and propagated to the second boundary to get a ρ2 value. The value
of the free parameter ρ̇1 is updated based on the root-finding algorithm used in subsequent
iterations until the value of range (ρ2) is same (upto a precision factor) as the ρ2 from the
OBVIOD iteration. The method is described more in detail in the following sections.

4.2 Newton Raphson in Shooting

The Shooting procedure employs a root-finding algorithm to find a solution that satisfies the
desired boundary value. Newton-Raphson method is used for this purpose. It extrapolates
the local derivative to the next estimate of the root (Press et al., 1992). Assuming x1 to be
the current point and f(x1) to be the function value at that point, the next estimate of the
root of function f(x) becomes:

x2 = x1 −
f(x1)

f ′(x1)
(4.1)

Geometrically it consists of extending the tangent line at a current point x1 until it crosses
zero, then setting the next guess x2 to the abscissa of that zero-crossing (see Fig. 4.3).

In case of Shooting IOD, it searches a root for the function (ρ2j − ρ2) using the free
parameter ρ̇1, j being the iteration number. The Newton-Raphson method requires an
initial value of the latter to start the iterations. In the initial versions of the algorithm, the
idea was to choose this value from admissible bounds proposed by (Schumacher et al., 2013)
on different parameters including ρ̇. The said bounds originate from apogee and maximum
possible perigee speeds, which were tailored to the current scenario for geostationary orbits.
A random value from this interval was chosen to be the starting value for the iterations inside
Newton-Raphson. However, it was observed that it did not perform well and the method
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failed to converge by taking random starting values from this interval. Even a small change
of about 1% in the initial value could hinder the convergence and the Shooting method
wasn’t be able to find a root for a given (ρ1, ρ2). Hence, it was decided to use the solution of
unperturbed Lambert algorithm as an initial value. The reason for poor performance with
previous procedure could be due to the fact that the Newton-Raphson method works well
only for local convergence and needs a good starting value.

Fig. 4.3 – Function derivative at point x1 is used to find the next estimate x2 of the function’s
root (Press et al., 1992).

4.2.1 Performance improvements for Newton-Raphson
Shooting-OBVIOD

The Newton-Raphson Shooting-OBVIOD was tested for different number of revolutions and
Area-to-mass ratio (AMR) values. It was found that the execution time was much higher in
comparison to the unperturbed Lambert OBVIOD, owing to the use of numerical propagator.
In order to lower the execution time and maintain the correlation performance, flow control
techniques were used. One of the measures taken was to perform half the iterations in
Shooting IOD using a Keplerian propagator, while the rest half of iterations benefit from the
propagation with perturbations. The resulting schematic of the Shooting IOD is as shown
in Fig.4.4, j is the current iteration number in the IOD.

Other measures taken to improve the performance included:

1. Limit on minimum stepsize: In the original OBVIOD algorithm, the linesearch itera-
tions taking place in the minimum gradient search algorithm (BFGS) continue until
a decrease in the function value is noted for a particular step. The values of ρ1, ρ2
are then modified using a variable step size. The latter continues to decrease during
these iterations and reached values around one micrometer or less in some cases. In
Newton-Raphson Shooting OBVIOD, this value was limited to 1 centimeter in order
to come out of the line search iterations loop if the stepsize keeps decreasing until the
maximum linesearch iterations limit is reached. In this case, the Hessian matrix of
the loss function to be used in the corresponding BFGS iteration is reset so that the
further BFGS iterations can continue the minimum search.

2. Number of iterations in BFGS: The number of iterations taking place in the BFGS
algorithm was 10,000 in the original OBVIOD. As the unperturbed Lambert IOD was
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faster than the Shooting IOD this wasn’t noticeable. However, with the introduction
of Shooting IOD with perturbations, this number had to be reduced to an acceptable
value in order to save time. The new number of iterations was chosen after testing
various cases of revolutions, AMR values for correlation performance. It was made
sure that the number of iterations did not limit the whole algorithm from making
correlations. On the other hand, this number could be modified if the parameters in
the functioning of the algorithm are changed somehow or if an unforeseen case with a
particular number of revolutions and/or AMR value is tested in the future.

Fig. 4.4 – Flow diagram of Shooting IOD using Newton-Raphson method.

3. Divergence in Shooting algorithm: Flow control was used inside Shooting algorithm
to prevent iterations in case the magnitude of the instantaneous difference ρ2j − ρ2
(Newton-Raphson function) is increasing rather than converging to the minimum.
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4.2.2 Limitations of Newton-Raphson method

There were cases where the Newton-Raphson method could not find the root or diverged.
This happened when observations from more than one night were considered for any AMR
value. This was seen regardless the use of Keplerian propagator for half of the iterations in
Shooting algorithm. The divergence for multiple night observations resonated with the fact
that the multiple revolution cases have many possible solutions for the orbit determination
problem. In these cases, the function inside Shooting method had multiple roots which
made it difficult to converge. Another reason would be the effect of perturbations, which
becomes higher for longer time intervals between the tracklets considered. The initial value
from unperturbed Lambert solution was not good enough for the Newton-Raphson algorithm
which has problems in global convergence.

There are additional challenges for tracklets that are close to full revolutions apart, im-
plying the line of sight angles at first and final epoch are almost the same. In these cases
the unperturbed Lambert algorithm fails and doesn’t give a solution that could be used as
an initial value for the Shooting iterations.

4.2.3 Limitations due to use of unperturbed Lambert solution as initial
value

The initial value for Newton-Raphson algorithm is provided by the unperturbed Lambert
solution. This means that the working of Shooting method is not shielded from the limita-
tions of the Lambert algorithm. As mentioned in the previous chapter, the Lambert orbit
determination takes place using the method from Izzo (2014). The Lambert’s initial orbit
determination algorithm mentioned in Izzo (2014) uses the Lambert problem’s geometry to
derive new variables in order to solve the problem. The derivations originate from the ex-
pression of time-of-flight as shown in Eq.(3.11). An important parameter used to solve the
Lambert’s problem in this algorithm is λ, which is defined in section 3.3.

This algorithm assumes no perturbations while solving the initial orbit determination
problem. There are some scenarios where this algorithm begins to fail or becomes inaccurate.
Some of the problems faced are described below:

1. Ambiguity near full revolutions: The line of sight vectors at the first epoch −→u1 and
second epoch −→u2 almost overlap each other near full revolutions. The angle between
−→u1 and −→u2 is called the transfer angle, it approaches zero if a full revolution case is
concerned. This leads to the ambiguity in no. of revolutions and also the solution to
be used (Izzo, 2014);(Zhang et al., 2010). Hence, the solution provided by the Lambert
algorithm in these cases is not reliable.

2. Time-of-flight (tof) not computed for highly perturbed orbits: The algorithm proposed
by Izzo (2014) involves various steps. A variable called x is defined (section 3.3), which
is to be used as the iteration variable. It can be expressed as:

x = cos
α

2
(4.2)

for elliptic orbits or,
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x = cosh
α

2
(4.3)

for hyperbolic orbits, where α is the angle derived from Lambert’s problem’s geometry
and given in Eq.(3.11). The Lambert solver iterates on the Lancaster-Blanchard vari-
able x using a Householder iteration scheme. Following this, various other variables
are defined using x and λ. Finally the non-dimensional tof equation is derived, which
is valid in all cases (parabolic, hyperbolic and elliptic). The derivations assume a non-
perturbed motion of the object. The value of x is provided by initial guesses found
exploiting the curve shape in a τ − ξ plane. τ and ξ are defined in terms of x and T
(non-dimensional time-of-flight) respectively. ξ is the Lambert invariant according to
Gooding (1990) since it is a transformation of x. The relation of τ and ξ to x and T
is shown below, N is the number of revolutions.

dξ =

{
1

1+x
dx,N = 0,

2
1−xdx,N > 0

dτ =
1

T
dT (4.4)

Once the initial value of x is supplied, the Householder iterations take place. A new
value of non-dimensional tof and x is computed in every iteration and until the error
is below tolerance, the iterations continue. The error term is defined as:

err = |x0 − xnew| (4.5)

The value of tof is computed using either Lagrange, Battin or Lancaster formula Izzo
(2014) depending on the value of x. Fig.4.5 shows a case where the iterations take
place using Lancaster formula. The tof equation in this case is as follows:

tof =
(x− λz − dlan

y
)

E
(4.6)

where dlan, z, y and E are defined as

E = x2 − 1;

K = λ2;

z =
√

1 +KE;

y =
√
|E|;

dlan = log(f + g);

f = y(z − λx);

g = xz − λE.

(4.7)

The screenshot in Fig.4.5 shows that (f + g) < 0, which makes dlan = NaN. NaN
standing for not a number, is a member of a numeric data type that can be interpreted
as a value that is undefined such as the result of 0/0. This subsequently leads towards
the failure to compute a value of tof. The values of velocity are not computed and one
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does not get a solution for the initial orbit. Since this Lambert algorithm assumes an
unperturbed geometry, it gives wrong/unexpected values which makes the algorithm
fail in some cases.

3. Divergence due to Lambert solution being far from perturbed solution: If a full failure
does not occur as shown in the previous case, there will still be some differences from
the real solution because of the presence of perturbations. The difference between the
Lambert solution and the real solution mainly depend on the time-of-flight (number
of revolutions) between the two tracklets and the AMR value.

Fig. 4.5 – An example showing a case where the Lambert algorithm fails for a highly perturbed
orbit.

In some cases the function values are modified when a different propagator is used to
propagate the states from the first tracklet’s epoch to the second. An example is shown
Fig.4.6, where the function values are plotted using Keplerian and numerical propagators
for the same ρ1, ρ2. This could be another reason why the Newton-Raphson method didn’t
work well in the Shooting IOD with initial value from the Lambert solution. Since the
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function values using a Keplerian propagator or the numerical propagator are different, it
would lead to slightly different values of roots. Since the Newton-Raphson method is very
sensitive to even small changes in the initial values, it would mean that the algorithm couldn’t
converge in such cases.

4.2.4 Improvements in Shooting-OBVIOD

The previous sections showed the limitations of the Shooting-OBVIOD when using the un-
perturbed Lambert solution as initial value for Newton-Raphson method. The possible
improvements considering various limitations are outlined here.

The solution in Shooting-OBVIOD has to be computed for all the possible numbers of
revolutions. While solving the Lambert problem, each number of revolutions has two pos-
sibilities: high energy path and low energy path. For multiple revolutions, the number of
possible scenarios could go up to a high number (6 in the case of 3 revolutions). The num-
ber of scenarios to be computed depends on the minimum and the maximum number of
revolutions resulting from the maximum and minimum value of the semimajor axis allowed.
Fig.4.7 shows such a case where solutions will be searched for 2, 3 and 4 revolutions for
both highpath and lowpath scenarios. This number could be reduced by applying further
constraints to the admissible region or by changing how each possible solution of Lambert’s
problem is followed.

Fig. 4.7 – An example showing a case when the Shooting-OBVIOD with Newton-Raphson
will have to search through six possible solutions based on number of minimum and
maximum revolutions.
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The root finding method needs to be changed from Newton-Raphson to another method
that is better for global convergence. It would be beneficial to use a method that doesn’t
fail if the function has multiple roots, which is the case in multiple revolution scenarios.
Furthermore, the method should not depend on the initial value from Lambert’s algorithm,
which was the reason for failure in some cases.

4.3 Bisection method

Newton-Raphson method might have convergence issues if the initial estimate is far from
the solution. In order to avoid such scenarios, a different root finding algorithm is needed
which is more reliable in terms of convergence. Bisection is one such method, thus it is used
to replace the Newton-Raphson method inside the Shooting IOD. It works by searching for
the point where the function changes its sign. The interval containing the root needs to be
identified to begin the search.

An interval based on the admissible region (constraining the semi-major axis) for our
problem is chosen. A root lies in the interval (a, b) if f(a) and f(b) have opposite signs. The
function is evaluated at the interval’s midpoint and its sign is examined. The midpoint is
used to replace whichever limit has the same sign. After each iteration, the bounds containing
the root decrease by a factor of two. If after n iterations, the root is known to be within an
interval of size ε, then after the next iteration it will be within an interval of size ε/2. The
iterations are carried out until the function value is below tolerance.

If the function is continuous, in case of a sign change at least one root must lie in that
interval (the intermediate value theorem)(Russ, 1980). If the function is discontinuous, but
bounded, then instead of a root there might be a step discontinuity which crosses zero (see
Fig.4.9).

If the interval happens to contain two or more roots, bisection will find one of them. If
the interval contains no roots and merely straddles a singularity, it will converge on the
singularity. The different scenarios mentioned are shown in Fig.4.8, 4.9, 4.10 and 4.11 (Press
et al., 1992).

Fig. 4.8 – The figure shows an isolated root x1 bracketed by two points a and b at which the
function has opposite signs.
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Fig. 4.9 – The figure illustrates that there is not necessarily a sign change in the function near
a double root (in fact, there is not necessarily a root!).

Fig. 4.10 – Example of a pathological function with many roots.

Fig. 4.11 – The function has opposite signs at points a and b, but the points bracket a singu-
larity, not a root.

4.3.1 The Shooting algorithm function

If one is given a function in a black box, there is no sure way of bracketing its roots, or of
even determining that it has roots. An example of a function plot was made for (ρ2j − ρ2)
for an initial OBVIOD hypothesis (ρ1, ρ2) in case of three revolutions and AMR 10 m2/kg.
Fig.4.12 illustrates two points (A, B) on the function, which constitute the boundary of an
interval that contains three roots. The function inside the Shooting algorithm is ρ2j − ρ2
(j is the iteration number in the Shooting IOD) as mentioned in the section above. This
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is referred to as ρ2diff in the figure and the mid-point of the (A, B) interval is C. Another
case of 3 revolutions and AMR 10 m2/kg for a different pair of tracklets and (ρ1, ρ2) an
extended function plot was made. The possible ρ̇ values for a geostationary orbit were first
used to compute the function values and then extended to higher magnitudes of ρ̇ where
the function diverged. The plot is shown in Fig.4.13 below. The function is continuous with
multiple roots. As seen in the introduction, the bisection method could be used for this type
of function. Since the function has multiple roots, it will need to be divided into various
intervals (also called brackets) in order for bisection algorithm to find all the roots in the
desired intervals.

Fig. 4.12 – Function plot between an interval A and B.

Constraints for Brackets in Bisection

Brackets are searched in the admissible region defined by the semimajor axis, between 41,000
km and 43,000 km. The orbital velocity expression from the vis-viva equation is:

v2 = GM(
2

r
− 1

a
) (4.8)
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If the maximum semimajor axis value (43,000 km) is substituted in the above quadratic
equation, one gets two roots for the velocity. The geocentric position and velocity as a
function of ρ, ρ̇ can be expressed as:

r(ρ) = −→rs + ρ−→u (4.9)

v(ρ, ρ̇) = −→vs + ρ−̇→u + ρ̇−→u (4.10)

The information about −→rs and −→vs (station position and velocity) is available. −→u is the

line of sight vector and −̇→u is its rate of change. The only unknown in Eq.(4.10), ρ̇ can be
computed using velocity values one gets from the constraints. Using the values from the
semimajor axis constraints, one obtains a quadratic in range-rate. Rearranging Eq.(4.8) and
using Eq.(4.10), one gets

a =
rGM

2GM − r(ρ̇−→u + ρ−̇→u +−→vs )2
. (4.11)

The roots of this quadratic will correspond to the bounds of our function by inserting
respective a values. For the minimum value or maximum value of semimajor axis either
zero, one or two values of ρ̇ can be obtained depending on the function. The ρ̇ values
corresponding to the semimajor axis minimum or maximum are used as the starting brackets
for the bisection method. Point C in the Fig. 4.12 corresponds to the semimajor axis
minimum on the ρ̇ axis and points A and B correspond to the maximum.

Intervals containing multiple roots are separated into smaller brackets. This will be done
in cases similar to Fig. 4.12 where there is more than one root in the A,B bracket. Since
there are odd number of roots, a sign change is noticed in the function value from A to B.
However, when the search begins between the midpoint C and A there is no change in the
function sign, which could mean no root or even number of roots in the interval. The interval
A,C is again divided into two to make sure no roots were missed in either of the halves. In
the end, the final number of brackets are established each containing a single root. In this
particular case there will be three. All of them are searched for roots using bisection method
and once found need to be filtered in the OBVIOD algorithm to choose the solution for a
given pair of tracklets.

Similarly eccentricity can be expressed using the geocentric position, velocity and semima-
jor axis as:

e =

√
1− (−→r ×−→v )2

µa
. (4.12)

Once one substitutes the value of a from Eq.(4.11) and values of −→r and −→v in terms of ρ, ρ̇
one obtains a quartic equation in ρ̇. The solution to the quartic equation was comparatively
difficult to calculate, contrary to the semimajor axis relation. Hence, only the latter was
used to define function bounds. The Eq.(4.12) also shows that for every value of semimajor
axis we will have two values of eccentricity, with only one exception of minimum value of
semimajor axis.

The eccentricity and semimajor axis are plotted separately with respect to ρ̇ for the same
object whose function plot is shown in Fig. 4.13. The eccentricity plot (Fig. 4.15) shows
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that there are hyperbolic solutions (e > 1) for higher magnitudes of ρ̇ and elliptical solutions
for smaller values. This is also reflected in the semimajor axis plot (Fig. 4.14) where one can
see hyperbolic solution (a < 0) for some values of ρ̇. The elliptical solutions of semimajor
axis can be seen for some lower values of ρ̇ which also include the semimajor axis limits
used to define the brackets in bisection. The semimajor axis plot is zoomed in to show what
happens at high values of ρ̇, the semimajor axis values increase sharply and finally go below
zero (see Fig. 4.16). The semimajor axis plot for elliptical orbits is shown in Fig. 4.17. The
e vs a plot is shown as well for the elliptical orbits, one can see that there are two solutions
for eccentricity for every value of a (Fig. 4.18).
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Fig. 4.16 – Semimajor axis plot zoomed between ρ̇ values of (−3500,−3400) to show the
transition from elliptical to hyperbolic orbits.
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Fig. 4.17 – Semimajor axis plot for lower values of ρ̇ where the orbits are elliptical.
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Fig. 4.18 – Eccentricity vs semimajor axis plot showing two values of eccentricity for every
value of semimajor axis except for the minimum energy orbit.

4.3.2 Bisection-Shooting

The constraints mentioned in the previous section are used to find the bounds of the function
(also referred to as brackets). The principal brackets interval resulting from the semimajor
axis maximum and minimum value are searched for roots. The basic bisection strategy is
followed and the change of sign of the function is noted. After defining the brackets, they
are followed one by one to search for the roots. The value of ρ̇1 is updated in the consecutive
iterations by moving towards the mid-point of a bracket.

This can be illustrated using the interval shown in Fig. 4.12. In order to search for a root
inside C,B the ρ̇1 value will move inside ˙ρ1C and ˙ρ1B by examining the sign at the midpoint
of the new interval (assuming it to be D). The latter can be calculated using the relation
below.

ρ̇1D = ρ̇1C +
(ρ̇1B − ρ̇1C)

2
(4.13)

After computing the root from a given bracket, it is followed in the iterations in the
BFGS. The root finding takes place for each iteration until all of them are exhausted or
the minimum gradient is reached. If a loss function minimum is found, that particular
solution from a given bracket is accepted. Otherwise, the next bracket is followed and the
same procedure is repeated, until the solution is found, each bracket is followed one by one
starting from the positive value of ρ̇ corresponding to the amax root.
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4 Shooting method

The ρ̇1 root depends on the ρ1 value which changes through different iterations. Hence
the size of the brackets changes as well. The strategy adopted in those cases is to take the
root from the adjacent bracket (the one which was not searched before).

The values of α2 and δ2 are not used in the Shooting IOD. These values could be used
along with ρ2. However, the resulting differences in state at epoch 2 would be positive or null
because they will be computed for the vectors and vector difference’s magnitude is always
positive. Since the strategy in Bisection method works by detecting the change in sign of
the functions, this was not possible. Consequently, only the difference between ρ2 computed
in the Shooting method and ρ2 from OBVIOD was used.

Fig. 4.19 – Process flow in Bisection-Shooting IOD.

The values of α2 and δ2 are used in the final discriminator of Shooting-OBVIOD in one of
the versions of Bisection-Shooting OBVIOD. The structure of the latter is given in subsec-
tion 4.3.3.
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4.3 Bisection method

Minimum semimajor axis constraint

The value of semimajor axis was constrained between values 41,000 km and 43,000 km as
mentioned in Section 4.3.1. In some cases the minimum of the semimajor axis function is
greater than 41,000 km. So the constraint was modified in order to accommodate different
situations. The minimum of the function is calculated and if it is below 41,000 km then this
value is chosen as the minimum to start brackets else the function minimum itself is chosen
to define the brackets.

Examples are shown for two of the objects tested. In Fig. 4.20 the minimum of a is
more than the minimum set for constraints. The ρ̇ value corresponding to the minimum a
is the starting point for Bisection brackets. In Fig. 4.21 the minimum of a is less than the
minimum set for constraints. In such cases, the semimajor axis constraint value of 41,000
km is used to define the brackets. This will result in two values of ρ̇ for the minimum a.
These values along with the ρ̇ values corresponding to the maximum a are used to define
the brackets.
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Fig. 4.20 – Semimajor axis vs ρ̇ plot showing minimum value higher than the chosen admiss-
ible region minimum.

Use of brackets

The ρ̇1 root depends on the ρ1 value which may change during different iterations. Hence
the size and number of brackets change as well. The brackets are always searched one by
one starting from one of the two values of ρ̇ corresponding to the semimajor maximum. The
numbering of brackets starts from the first interval containing root between ρ̇amin and ρ̇amax
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4 Shooting method

(positive value). The description of brackets originating from the admissible region is shown
in Fig. 4.21 for a given object and (ρ1, ρ2).

In the original OBVIOD algorithm, the number of possible solutions could go up to six
for a case of three revolutions. The admissible region used in Bisection and definition of
brackets reduces the number of possible solutions to be computed. This is essential when the
numerical propagation is expensive in terms of time especially in multi-revolution scenarios.

Fig. 4.21 – Semimajor axis vs ρ̇ plot showing minimum value lower than the chosen admissible
region minimum.

In case the bracket being followed disappears because there is no root in that interval
anymore for a (ρ1, ρ2), the root is searched in the next bracket. This is achieved by awarding
a serial number to the brackets. An example of number of brackets reducing from one ρ pair
to another is shown in Fig. 4.22. The number of roots in the admissible region reduces from
two to one.

Hence, the serial number of the bracket is being followed rather than strict values of ρ̇.
For example from the Fig. 4.22 one can note that the bounds of one bracket shift from (-200,
550) to (-200, 200) and so on.

Sometimes there is no root in a bracket. This can happen when a ρ1, ρ2 pair does not

correspond to the −→u1, −̇→u1, −→rs and −→vs . In such a case a different combination of ρ1 and ρ2
should be considered. This is handled by varying the ρ1 by steps to widen the bracket until
there is a root in the bracket. The OBVIOD algorithm uses the admissible region approach
to set ρ1 and ρ2 thresholds. The ρ1 value can be varied to search for roots until the threshold.
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4.3 Bisection method

In these cases, the semimajor axis quadratic Eq.(4.11) used to find ρ̇1 values for aamin and
amax does not give a result as the determinant is negative (imaginary ρ̇) or sometimes, it
gives ρ̇1 for aamin and amax but with no roots inside that interval. The screenshot in Fig.
4.23 shows such a case where the algorithm fails to find the bounds containing a root and
the value of ρ1 needs to be modified until one gets an interval with valid values.

Fig. 4.24 – Example of a scenario where the semimajor axis bounds are not found from the
quadratic equation due to a certain value of ρ1.

4.3.3 The Bisection-Shooting OBVIOD versions

There are two versions of the Bisection-Shooting OBVIOD algorithm with two different
sets of discriminators. Chapter 3 showed how the change of free parameters to ρ1, ρ2 lead
to a more optimal function topography and hills, valleys disappeared for a given interval
of revolutions. In the versions of the algorithm with Bisection-Shooting for IOD, the same
hypothesis variables (ρ1, ρ2) are used. This pair of variables provides the advantage of a more
favorable search space than ρ1, ρ̇1. Once the range hypothesis is made, this pair enters the
Shooting scheme where the ρ̇ hypothesis is made in order to determine the orbit for a given ρ
pair. The Mahalanobis distance is computed using (α2, δ2, α̇2, δ̇2) as the discriminator inside
BFGS algorithm in the one version of the algorithm and using (α̇1, δ̇1, α̇2, δ̇2) in the other
version. The angular positions are used as a part of the discriminator in the first version of
algorithm because they are not used in the Shooting IOD.
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4 Shooting method

Fig. 4.25 – Process flow in the first version of the Bisection-Shooting OBVIOD with angular
positions and rates at the second epoch as the discriminator.

The discriminator in the first version makes the Shooting-OBVIOD algorithm similar to
the initial value orbit determination algorithm. However, due to the change of iteration
variables from ρ1, ρ̇1 (initial value algorithm) to ρ1, ρ2 in BFGS, the function topography is
kept optimal. The schematic of this version is shown in Fig. 4.25 and the second version in
Fig. 4.2. The only difference between the two is the discriminator.

The flow control procedures and other optimization constraints used to enhance perform-
ance of Newton-Raphson Shooting OBVIOD (mentioned in 4.2) were used for the Bisection
Shooting OBVIOD as well. The details about different constraints and parameters used
inside the algorithm are mentioned below:

1. Limit on minimum stepsize: The linesearch iterations taking place in the minimum
gradient search algorithm (BFGS) continue until a decrease in the function value is
noted for a particular step. The values of ρ1, ρ2 are modified using a variable step
size. The latter continues to decrease and was limited to 1 centimeter as mentioned in
section 4.2, this value is kept in the Bisection-Shooting OBVIOD.

2. Number of iterations in BFGS: The new number of iterations was chosen after test-
ing various cases of revolutions and AMR for correlation performance. It was made
sure that the number of iterations did not limit the whole algorithm from making
correlations. On the other hand, this number could be modified if the parameters in
the functioning of the algorithm are changed somehow or if an unforeseen case with a
particular number of revolutions and/or AMR value is tested in the future.

3. Divergence in Shooting: Flow control was used inside Shooting algorithm to prevent
iterations in case the magnitude of instantaneous function value ρ2diff is increasing
rather than converging to the minimum. The Bisection-Shooting IOD uses admissible
region bounds for semimajor axis and computes brackets containing roots of the func-
tion. A divergence scenario was not encountered and algorithm is shielded from it.
Hence, the condition was not needed and removed for Bisection-Shooting IOD.
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4.3 Bisection method

4. Hessian matrix reset limit: The number of times Hessian matrix can be reset is limited
so that in cases where the BFGS function is stuck near a ρ1, ρ2, the time is not wasted
and one can either jump to processing the next bracket or the processing will finish if
the bracket was the last in line.

5. The first bracket that gives MD below the threshold is chosen and the rest of the
brackets are not looked for a solution because of time constraints.

The Function topography

The loss function topography for OBVIOD was analysed by Siminski et al. (2013a) in order
to find a strategy for minimization. The loss function topography provides insights to the
function behavior. Some of the tests involved a pool of an hour long tracklets from which
one pair didn’t correlate. However, the same tracklet pair of 7 minutes length or lower
correlated. The behavior of the hour long tracklet pair was investigated by using the loss
function topography for the second version of Bisection-Shooting OBVIOD, it can be seen in
Fig. 4.26. This version uses (α̇1, δ̇1, α̇2, δ̇2) as the discriminator. The figure shows the path
followed by the function during processing. It is visible that the path followed leads in the
opposite direction to that of the actual solution region. The solution region is plotted as well
and can be seen in Fig. 4.27, which shows the real solution. The long length of the tracklets
prevented them from being correlated mainly because the linear model of attributables is
not valid for such long tracklets. Moreover, the long tracklets separated by about three
revolutions lead to higher uncertainty, and a good initial orbit is never computed.

The function topography of the same tracklet pair with 7 minutes length for the same
version of Bisection-Shooting OBVIOD is shown in Fig. 4.28. The real solution is marked
using a data point in the plot. The processing path leads one towards the correct solution
and the tracklet pair is correlated.

The loss function topography in the (ρ1, ρ̇1) space is plotted for the first version of the
algorithm, the one that uses (α2, δ2, α̇2, δ̇2) as discriminator for the MD. The plot was made
in order to investigate if this variable space is optimal for search, and has a clearly defined
minimum. The plot was made for 7 minutes long tracklet pair and is shown in Fig. 4.29.
The global minimum lies in the region with 2 < revolutions < 3. However it can be seen that
for the same ρ̇1 bracket, one has a possibility to find minimum in either of the revolutions
space. The second version of the algorithm performs slightly better in this respect for the
cases investigated.
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5 Tests and Results

This chapter will show the results obtained with different versions of the OBVIOD algorithm.
The following sections will discuss the reasons behind the specific results. The performance
of the latest version of the algorithm will be shown with variation of several parameters for
a set of tracklet pairs. In total more than 60 different tracklet pairs were tested.

5.1 Simulation of input files

The survey strategy consists of repeatedly scanning a declination stripe with a fixed right
ascension. The declination interval is chosen as ±8° for each right ascension. Observations
were simulated using the Zimmerwald station coordinates to get topocentric angular pos-
itions over the length of 2 to 3 minutes. The TLEs used were extracted from Spacetrack
(SPACE-TRACK, 2019) objects catalog. Perturbations were added for: geopotential terms,
solar radiation pressure, third body attraction forces for Sun and Moon. In the following
tests observations simulated for the GEO regime were considered. The constraints applied
on different elements were: inclination < 10, eccentricity < 0.3, semimajor axis between
41,000 km and 43,000 km. Two tracklets are tested at a time. They are separated by a few
hours, one, two or three revolutions in different cases. The Ω, ω and v are not constrained
while simulating the observations. A normally distributed optical error of one arc second
was added for all the observations.

5.2 Tests performed

5.2.1 Comparison between Newton-Raphson Shooting and
unperturbed OBVIOD

This section shows results of the tests performed on a group of tracklets. The Newton-
Raphson Shooting and the unperturbed OBVIOD are compared by varying the number of
revolutions and AMR values. All the tests are done with different objects so as to increase
the sample size. The number of tracklet pairs tested are still limited owing to the high
computation time consumed by the numerical propagator used in Shooting-OBVIOD. The
results are shown starting from Fig.5.1 to Fig.5.6.
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5 Tests and Results

Fig. 5.1 – The number of revolutions are shown in the x-axis. For tracklet pairs separated by
less than 1 revolution, the unperturbed OBVIOD and Newton-Raphson OBVIOD
perform well. With increasing number of revolutions there is a fluctuation in the
correlations made by these methods.

Fig. 5.2 – The number of revolutions are shown in the x-axis. With AMR of 0.1 m2/Kg and
increase in number of revolutions the Newton-Raphson method is slightly better
than the unperturbed OBVIOD.
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5.2 Tests performed

Fig. 5.3 – The number of revolutions are shown in the x-axis. In case of high AMR value and
increasing number of revolutions the Newton-Raphson method performs equally
well or better than the unperturbed OBVIOD.

Fig. 5.4 – The AMR is shown in the x-axis. Neither unperturbed OBVIOD nor the Newton-
Raphson OBVIOD miss any correlations for tracklet pairs separated by less than 1
revolution. This is true for any of the AMR values tested.
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5 Tests and Results

Fig. 5.5 – The AMR is shown in the x-axis. For tracklets one revolution apart the Newton-
Raphson performs slightly better than the unperturbed OBVIOD.

Fig. 5.6 – The AMR is shown in the x-axis. The correlations for Newton-Raphson and un-
perturbed OBVIOD are shown for a given number of tracklets tested.

The variation of AMR values while keeping the number of revolutions constant and vice-
versa gives an insight about the limitations of unperturbed OBVIOD and to what extent
the Newton-Raphson Shooting-OBVIOD is able to overcome them.
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5.2 Tests performed

The degradation of unperturbed OBVIOD results is evident for 1 or more revolutions
(Fig.5.1, Fig.5.2 and Fig.5.3) and similarly for High-Area-to-Mass-Ratio (HAMR) objects
(Fig.5.4, Fig.5.5 and Fig.5.6). This is expected because with increase in AMR and tof the
perturbations have a higher impact, especially the solar radiation pressure.

The Table 5.1 below shows the summary of missed correlations for different number of
revolutions with variation of AMR value. The missed correlations refer to the number of
pairs that could not be associated together whereas they truly belong to the same object.
It can be noticed that both the Newton-Raphson and the unperturbed OBVIOD miss some
correlations for high AMR value, although this number is higher in case of the unperturbed
OBVIOD than of Newton-Raphson Shooting-OBVIOD.

Table 5.1 – The number of correlations missed are higher in case of the unperturbed OBVIOD
than the Newton-Raphson, for high AMR value and observations separated by
one or more revolutions.

5.2.2 Comparison between Newton-Raphson Shooting and
Bisection-Shooting OBVIOD

The objective after finding out the limitations of Newton-Raphson method was to use a
new root finding method inside Shooting IOD. Bisection method was chosen due to the
type of function inside Shooting algorithm and the convergence requirements. This section
analyses the correlation performance for both the Newton-Raphson method and the Bisection
method. Fig. 5.7, Fig. 5.8 and Fig. 5.9 show the number of correlations for the Newton-
Raphson and second version of Bisection-Shooting methods for different AMR values for
tracklets separated by <1, 1 or 2 revolutions. The Newton-Raphson OBVIOD starts to
miss correlations when tracklets are separated by 1 or more revolutions. However Bisection-
Shooting is always able to correlate the tracklets.
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Fig. 5.7 – The number of revolutions are shown on the x-axis. The Bisection-Shooting per-
forms better than the Newton-Raphson method when the tracklets are separated
by one or more revolutions.

Fig. 5.8 – The number of revolutions are shown on the x-axis.
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Fig. 5.9 – The number of revolutions are shown on the x-axis. The Bisection-Shooting OB-
VIOD correlates all number of tracklets.

Fig. 5.10 – The x-axis shows the AMR values. Both Newton-Raphson method and Bisection-
Shooting OBVIOD correlate all the tracklet pairs separated by less than one re-
volution.
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Fig. 5.11 – The x-axis shows the AMR values. The Newton-Raphson OBVIOD misses some
correlations when tracklets are separated by one revolution. However Bisection-
Shooting OBVIOD is always able to correlate the tracklets.

Fig. 5.12 – The x-axis shows the AMR values. Bisection-Shooting OBVIOD correlates all the
tested tracklet pairs separated by 2 revolutions.
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Table 5.2 – The Newton-Raphson Shooting-OBVIOD misses some correlations when tracklets
are separated by one or more revolutions, this is true for all the AMR values tested.
The Bisection-Shooting OBVIOD does not miss any correlations for the tracklet
pairs tested for different number of revolutions and AMR values.

Fig. 5.10, Fig. 5.11 and Fig. 5.12. show the number of correlations for both the methods
for different number of revolutions over a range of AMR values. The summary of all the tests
is shown in Table 5.2. The Shooting method with the Newton-Raphson technique is able to
correlate all the tracklets, which are only a few hours apart or are separated by less than one
revolution. This applies for all the AMR values considered in the tests. However, when the
tracklets are one or more revolutions apart, it misses some correlations. Since it takes its
initial value from the Lambert solution, it tries to find the root closest to the unperturbed
solution. As mentioned in subsection 4.2.3, Newton-Raphson method works well only for
good starting values and may diverge otherwise.

For the multiple revolution cases with the increasing number of possible solutions, this
starting value is not accurate enough to lead it to the solution. Moreover, for some high
AMR cases the unperturbed Lambert algorithm does not converge and hinders the working
of Shooting OBVIOD as well.

Significance of results obtained from tests comparing Newton-Raphson Shooting and
Bisection Shooting

1. The use of Bisection method inside the Shooting OBVIOD makes it independent from
the unperturbed Lambert solution and is not affected by the latter’s limitations.

2. Use of semimajor axis constraints: In addition, the use of admissible region based
on semimajor axis reduces the number of possible scenarios to be computed. This
number reduces to almost half the number of scenarios which were to be considered in
the Newton-Raphson Shooting OBVIOD.

3. Convergence: For each bracket that contains a root, Bisection method converges and
finds a solution unlike the Newton-Raphson method. Furthermore, it is not affected
by the initial boundaries chosen for the bracket as long as the latter contains a root.
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4. Use of numerical propagator: In Bisection Shooting all the iterations use the numerical
propagator in the root finding procedure. The brackets containing a root are also
found using the numerical propagator. This is especially important because doing so
one makes sure that the computed results are close to the real scenario. In Newton-
Raphson Shooting IOD, the initial value was taken from the unperturbed solution to
the Lambert’s problem and some of the iterations in the root-finding procedure use
the Keplerian propagator. It could be a possible reason why it was difficult for the
method to find a root because the Keplerian function plot and the numerical propagator
function plot are different. An example of this difference is shown in Fig.4.24.

These are the reasons that make the Shooting OBVIOD with the Bisection method for
the root search, a better choice for correlation.

5.2.3 Comparison between unperturbed OBVIOD and Bisection
Shooting OBVIOD

Both the methods are compared by varying the number of revolutions and AMR values. All
the tests are done with different objects so as to increase the sample size. The number of
tracklet pairs tested are still limited owing to the high computation time consumed by the
numerical propagator used in Shooting-OBVIOD.

Nevertheless, variation of AMR values while keeping the number of revolutions constant
and vice-versa does give an insight about the limitations of unperturbed OBVIOD and how
well Shooting OBVIOD is able to overcome them. The results are shown starting from
Fig.5.13 to Fig.5.20. The degradation of unperturbed OBVIOD results is evident for one
or more revolutions and similarly for very high-area-to-mass-ratio (HAMR) objects. This is
expected because with increase in AMR and time-of-flight the perturbations have a higher
impact, especially the solar radiation pressure.

Fig. 5.13 – The AMR value is shown on the x-axis. For tracklet pairs separated by less than
1 revolution, the unperturbed OBVIOD performs equally well except in case of
very high AMR.
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Fig. 5.14 – The AMR value is shown on the x-axis. The performance of the unperturbed OB-
VIOD begins to worsen starting from a case of tracklets separated by 1 revolution.

Fig. 5.15 – The AMR value is shown on the x-axis.
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Fig. 5.16 – The AMR value is shown on the x-axis. This case shows a clear decline of number
of correlations with the increase in AMR value.

Fig. 5.17 – The number of revolutions are shown on the x-axis. For a small AMR value, the
number of correlations decrease with increase in number of revolutions, however,
one still gets around 50% of the tracklet pairs correlated.
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Fig. 5.18 – The number of revolutions are shown on the x-axis. For a slightly higher AMR, the
decline in number of correlations is evident with increasing number of revolutions.

Fig. 5.19 – The number of revolutions are shown on the x-axis. The number of correlations
further decreases with increase in the AMR value. Although, the performance
does fluctuate between different number of revolutions.
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Fig. 5.20 – The number of revolutions are shown on the x-axis. The performance for very
high AMR value is comparable to the previous case, when the effect of number of
revolutions is considered.

Fig. 5.13, Fig. 5.14, Fig. 5.15 and Fig. 5.16 show the number of correlations for the un-
perturbed OBVIOD and the Bisection-Shooting OBVIOD for varying number of revolutions
over different AMR values. The performance of unperturbed OBVIOD is somewhat similar
between 1 and 2 revolutions, with highest AMR value resulting in minimum number of cor-
relations. Fig. 5.17, Fig 5.18, Fig. 5.19 and Fig.5.20 show the correlations for different AMR
vlues over varying number of revolutions for both the methods. Unperturbed OBVIOD be-
gins to fail with increase in number of revolutions. This also happens for high AMR objects.
The proposed algorithm performs well even in case of HAMR values and multiple revolutions
when compared to the unperturbed OBVIOD. Shooting-OBVIOD could replace the latter
in case correlation does not take place.

However, the Shooting-OBVIOD comes with some challenges. It works on the basis of
brackets which can disappear later in the iterations. In such cases, one could miss the solution
(no correlation) because the bracket containing root was not one of the available brackets.
There are cases where none of the brackets resulting from the initial hypothesis contain the
root. The right bracket may or may not appear in the later iterations. This method has a
dependency on the initial ρ pair hypothesis that is taken to begin the iterations. Besides,
the numerical propagation makes this algorithm much more slower when compared to the
unperturbed OBVIOD.

5.2.4 Factors affecting correlation for Bisection Shooting OBVIOD

Many tracklet pairs with eccentricities between 0 and 0.3 are tested. Fig.5.21 shows number
of correlations for different groups of eccentricity values. For tracklets belonging to higher
eccentricities (between 0.1 and 0.3) less than half of the pairs are correlated. After invest-
igating the causes it was found that in almost half of the cases that did not work, they
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converged on a wrong solution (usually with higher eccentricities, close to 0.5 sometimes)
and later the orbit could not be validated using the least-squares improvement. In the other
half of the cases that did not work, it is because the algorithm did not converge and ended
with a high MD value. In the latter case, the problem was following the wrong bracket (the
interval containing a root that does not correspond to the real orbital solution), which also
happened in cases where it did converge but with a wrong orbit.

Fig. 5.21 – The number of tracklet pairs correlated decreased for higher eccentricities for new
version of the OBVIOD algorithm using angular positions and rates at the second
epoch as discriminator in Bisection-Shooting OBVIOD.

In consecutive iterations it is possible that the bracket that initially had a root disappears
in the next iteration. In those cases a different bracket is given the same serial number
because for the current ρ1, ρ2 the older bracket doesn’t exist. The brackets appearance and
disappearance throughout the iterations has been a big problem in these cases. The reason
for this behavior could be the same as in the case when no brackets are found (refer to
subsection 4.3.2), there is no solution for the ρ1, ρ2 in the current iteration for the given −→u1,
−̇→u1, −→rs and −→vs . Such a case is shown in Fig.5.22.

One of the parameters that might affect the performance of an initial orbit determination
algorithm based on angles-only observations is the transfer angle. This is widely mentioned
in the literature also for the Lambert’s problem (Battin (1999), Gauss (1963), Zhang et al.
(2010), Gooding (1990), Vallado (2007)). The transfer angle, θ is the angular difference
between the line-of-sight angles at epoch of the first tracklet and the second. Some of
the solutions proposed to IOD problem had a sensitivity at certain θ values which varies
depending on the algorithms.

Many tracklet pairs were further tested to find out if the algorithm performance depended
on the transfer angle. The groups were divided into θ less than 1 degree, between 1 and
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(a) (b)

Fig. 5.22 – An example showing the disappearance of second bracket from one BFGS iteration
to another. In case the second bracket was being followed for a solution in BFGS
iterations, this occurrence forces the Shooting IOD solution to be that of the first
bracket instead.

20 degrees, and finally between 90 and 140 degrees. The separation of line-of-sight angles
at small values is a problem in some cases where it is difficult to find out the number of
revolutions. It is an issue from geometric point of view, it can cause numerical instability and
may yield incorrect answers. The information about angular positions may not be sufficient
in these cases and adding the error makes it even more challenging. For high values of the
difference in line-of-sight angles some of the correlations were missed (Fig. 5.23). In the
latter cases, the algorithm converged on a wrong solution.

Fig. 5.23 – The number of tracklet pairs correlated decreased for higher value of the transfer
angle θ and for very small values for second version of the OBVIOD algorithm
using angular positions and rates at the second epoch as discriminator in Bisection-
Shooting OBVIOD.
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Fig. 5.24 – The range of θ angle values is tested for various tracklets and it is found that the
second version discriminator using angular rates at both epochs performs slightly
better than the first discriminator.

Fig. 5.25 – The range of eccentricity values is tested for both the versions of the Bisection-
Shooting algorithm. It is found that the second version discriminator performs
better for lower and the higher eccentricity values where the first discriminator
misses many correlations between the tracklet pairs.
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In order to find out if the second version of the Bisection-Shooting algorithm performed
differently it was tested for the same groups of tracklet pairs for eccentricity. It was tested
for some of the tracklet pairs for angle θ as well. The results are shown in Fig.5.24 and
Fig.5.25.

As can be seen from the figures the higher eccentricities group performs better with the
second discriminator (angular rates at both the epochs). The number of correlations are
either equal or higher than the first discriminator. It could possibly signal that the second
discriminator values (α̇1, δ̇1, α̇2, δ̇2) are more accurate than the ones used with the first dis-
criminator (α2, δ2, α̇2, δ̇2). The former are redundant in the sense that (α̇1, δ̇1) are used in
the Shooting method IOD as well.

On the other hand, several solutions are possible. This happens because the algorithm
in first version of Bisection-Shooting uses angular positions at the second epoch as a dis-
criminator, which are not very reliable because of the very-short-arc observations and the
observation error. The latter is more pronounced in the angular positions than angular rates.
In the orbital boundary value problem, even with angular positions multiple solutions are
possible, angular rates help solve the ambiguity through the discriminator. Having 4 rates
reinforces the disambiguation w.r.t. 2 rates only and 2 boundary values (α2, δ2), the latter
creating ambiguity as in the original Lambert problem. So, one can take the second discrim-
inator as the better algorithm. Based on the all the tests conducted the second discriminator
performs equal to or better than the first discriminator.

The processing path of the algorithm is shown in Fig. 5.26 and Fig. 5.27 for a tracklet
pair which was tested using both the versions of the Bisection-Shooting algorithm. Even
though the tracklet pair was correlated with both the versions, the true solution is closer to
the solution found by the second discriminator.

Fig. 5.26 – The path followed by ρ1, ρ2 during processing in the first and second version of
the Bisection-Shooting algorithm is shown above.
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Fig. 5.27 – The path followed by ρ1, ρ2 during processing in the first version and second version
of the Bisection-Shooting algorithm with a focus on the solution region.

5.2.5 Summary of tests conducted

The tests conducted followed the path of development of the Shooting OBVIOD algorithm
starting from the Newton-Raphson method to different versions of the Bisection Shooting
OBVIOD. The correlation performance with varying number of revolutions and AMR values
was explored, discussed for various versions. For the Bisection-Shooting algorithm the effect
of eccentricity and the difference of line-of-sight angles at the first, second epoch was tested
as well. A comparison was drawn between both the discriminators and the results were
interpreted for the cases tested. Finally the processing path of both the versions was plotted
in order to visualize the difference for a tracklet pair which was correlated by both the
versions.
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6.1 Summary

This thesis contributes a tracklet-to-tracklet correlation and initial orbit determination method
with perturbations. In the first chapter, the space debris problem is introduced. The survey
strategies for optical observations using ground based telescopes are briefly described in ad-
dition to the object tracking techniques. It is followed by the orbit determination and catalog
correlation which is a part of the processing of the survey series. The optical measurements
obtained from the observation strategies are defined along with the concept of a tracklet.

The second chapter describes various concepts starting from the admissible region (AR)
to the tracklet-to-tracklet correlation for space objects.

The AR is used in many of the methods presented from literature survey including Milani
et al. (2004), Milani et al. (2005), Tommei et al. (2007), Fujimoto et al. (2014) and Spoto
et al. (2018). The former two sources also introduce the concept of attributable which
became popular and was used by some other authors. In the tracklet correlation methods
some of authors like Musci et al. (‘Orbit improvement for GEO objects using follow-up
observations’) proposed determination of circular orbits. Some authors mapped the AR
to a different element space (Delaunay or Poincaré) to find the point of intersection at a
common epoch. Another approach uses the concept of Virtual Debris or Virtual Particles
to represent the possible state of the observed object over the AR. The presented works
from the literature survey are analysed based on performance, multi-revolution problem and
perturbations.

The work in this thesis is based on a previously developed work on the orbital boundary
value problem called OBVIOD (Siminski et al., 2014). The latter is explained in the third
chapter, where the Lambert’s problem is also described. The OBVIOD algorithm uses the
solution of Izzo (2014) for a given ρ1, ρ2 hypothesis in the BFGS iterations.

The addition of perturbations in the existing OBVIOD technique is done using Shooting
method. It treats the boundary value problem as an initial value problem and propagates
an initial hypothesis from one boundary value such that the second boundary value con-
dition is met. The Newton-Raphson mechanism is used as a root-finding procedure inside
the Shooting-OBVIOD. The unperturbed OBVIOD and the Newton-Raphson Shooting-
OBVIOD are compared by varying the number of revolutions and AMR values. The per-
formance of the Shooting-OBVIOD is better than the unperturbed version. However, the
Newton-Raphson method suffers from different limitations owing to its sensitivity to the
starting value, the dependance on Lambert’s solution and convergence issues.

It became imperative to investigate the function behavior in the Shooting IOD and come
up with a suitable root-finding routine. It is discovered that the function is continuous with
multiple roots. An AR based on semimajor axis value is introduced and Bisection method
is chosen due to its reliability for continuous functions. Since the angular positions at the
second epoch are not being used in the Shooting IOD, they are included in the first version
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of Bisection Shooting OBVIOD as the discriminator along with the angular rates at the
second epoch. The second version of Bisection Shooting OBVIOD has the angular rates at
both the epochs as the discriminator, same as the unperturbed OBVIOD. The loss function
topography of both these versions is analysed. The effect of length of a tracklet on correlation
is studied shedding light on the limitations of linear model of the attributables.

The unperturbed OBVIOD and both the versions of Bisecting Shooting OBVIOD undergo
various tests, which are done with different simulated objects so as to increase the sample
size. The number of tracklet pairs tested are still limited owing to the high computation
time consumed by the numerical propagator in Shooting OBVIOD. Nevertheless, variation
of AMR values while keeping the number of revolutions constant and vice-versa does give
an insight about the limitations of unperturbed OBVIOD and how well Shooting-OBVIOD
is able to overcome them. The degradation of unperturbed OBVIOD results is evident for
1 or more revolutions and similarly for very high-area-to-mass-ratio (HAMR) objects. This
is expected because with increase in AMR and tof the perturbations have a higher impact,
especially the solar radiation pressure.

Unperturbed OBVIOD begins to fail with increase in number of revolutions. This espe-
cially happens for HAMR objects. The proposed Bisection-Shooting algorithm performs well
even in case of HAMR values and multiple revolutions when compared to the unperturbed
OBVIOD. Shooting OBVIOD could replace the latter in case the correlation doesn’t take
place for a tracklet pair. The second version of the Bisection-Shooting OBVIOD (angu-
lar rates discriminator) fares better than the first and is the one which should be further
developed.

However, the Shooting-OBVIOD comes with some challenges. It works on the basis of
brackets which can disappear later in the iterations. In such cases, one could miss the solution
(no correlation) because the bracket containing root was not one of the available brackets.
There are cases where none of the brackets resulting from the initial hypothesis contain the
root. The right bracket may or may not appear in the later iterations. This method has a
dependency on the initial ρ pair hypothesis that is taken to begin the iterations. Besides,
the numerical propagation makes this algorithm much more slower when compared to the
unperturbed OBVIOD.

6.2 Future Work

The future work foreseen for the methods developed in this thesis could begin from using a
different propagator. A semi-analytical propagator called Draper Semi-analytical Satellite
Theory (DSST) was tested from the Orekit library, however, its execution time was not very
different than the numerical one finally used. Although the analysis by Setty et al. (2016)
shows there is a performance gain expected, the Orekit 9.0 and Orekit 10.0 space dynamics
libraries (more info at Orekit (2018)) failed to reach that. The main culprit turned out to
be the SRP force model being used which was very expensive. Analytical approximation of
the SRP force model could reduce the computational load. In order to reduce the latter, the
search for a different root-finding routine or a modified version of the proposed Bisection
method would also be helpful. In case a modified version of Bisection method is considered,
the shifting or disappearance of the brackets would have to be tackled. If a different routine
is used, a strategy to separate the different roots inside the Shooting IOD would need to be
formed. It could be based on the number of revolutions, however, its dependence on the free
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parameters used should be investigated using function topography.
In addition, the choice of AR could be modified to study its impact on the gated interval

for Shooting IOD. For a modified Bisection technique it could shed light on how the range
hypothesis from OBVIOD gives rise to varied number of brackets over subsequent BFGS
iterations. Moreover, the correlation performance of Shooting-OBVIOD could be examined
by changing the free parameters in either of the iterations. A different method to add
perturbations in OBVIOD could also be explored.

Finally tests should be performed with real observations, a gain on performance would
facilitate such tests. That would enable this method to be used for catalog maintenance in
addition to the non-perturbed IOD techniques.
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