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ABSTRACT

The attitude state of defunct resident space objects (RSO)
is becoming of increasing importance due to advances in
active debris removal (ADR) capabilities. Photometric
observations can be used to assess the attitude mode of
suitable targets for ADR. The measured intensity of the
sunlight reflected by the object can contribute to detect-
ing periodicity and inferring the orientation of highly re-
flective surfaces. To resolve specular glints we want to
use a single photon avalanche diode (SPAD) for these
measurements. This sensor requires the observed object
to be centered in the field of view (FOV) of the telescope.
To this end, an optical tracking framework is developed
that uses a CMOS camera for precise tracking of RSOs.
A high-level controller is used to generate velocity inputs
to the telescope axes based on ephemerides and optical
feedback. A comprehensive overview of the key algo-
rithms and models used is given and preliminary results
are analyzed.
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1. INTRODUCTION

Photometric observations of RSOs can be used to char-
acterize or fully determine their attitude state. There are
several methods to acquire these measurements that de-
pend on the orbital regime of the objects, the FOV and
aperture of the telescope and the imaging sensor used.
A fundamental distinction can be made between meth-
ods that compensate for the relative motion of the ob-
ject in the image processing and methods that require the
telescope to be guided along the path of the object in
the sky. The latter type has been used by our institute
for more than 10 years to acquire light-curves of space
debris. These observations require smooth tracking but
small pointing errors along-track and cross-track of the
orbit are still compensated for in the image reduction. For
sensors such as photomultiplier tubes or SPADs which
measure the photon flux incident on a single pixel this is
not an option and all pointing errors have to be compen-
sated by the controller that guides the telescope along the

trajectory of the observed object. To measure the pointing
error a guiding camera is used in parallel to the sensor and
corrections are computed in real-time and combined with
the ephemeris of the object to control the telescope. In
this paper we give an overview of a system that achieves
this using a standard interface available on many mod-
ern telescopes. A C program was developed that con-
trols our Andor Zyla 5.5 sCMOS camera and sends ve-
locity commands to the telescope. The telescope used
for this development is the 80 cm ZimMain telescope at
the Swiss Optical Ground Station and Geodynamics Ob-
servatory in Zimmerwald. The CMOS sensor is attached
to the 5600 mm focal station at one of the two nasmyth
ports of the Ritchey-Chrétien altitude-azimuth telescope.
In this configuration it covers a field of view (FOV) of ap-
proximately 10.2’× 8.6’. The program features a graph-
ical user interface (GUI) that displays the frames as they
are being acquired, allowing an observer to identify and
select a target. Two threads control the camera and the
telescope independently at first until an optical feedback
mode is enabled. In this mode the observed deviation of
the object from the center of the FOV is used instead of
encoder positions to guide the telescope. The remainder
of this paper is structured as follows: First, the generation
of ephemerides and the necessary coordinate systems are
introduced. Then the high-level control scheme for an
alt-az mount is explained. System identification of the
two axes using sinusoid velocity inputs is addressed, as
it forms the basis for the tuning of the controller, simula-
tion, and testing. Next the real-time image processing is
adressed, which consists of tracking the region of inter-
est (ROI) within the frame and detecting when the object
is lost. The two topics of telescope control and image
processing are then combined to achieve active tracking,
which stands for the correction of the telescope trajectory
during tracking based on the observed error with respect
to the ephemeris. This includes a description of the oper-
ating modes of the camera and the framework developed
to couple camera and telescope. Finally, some prelimi-
nary results are presented and the drawbacks and advan-
tages of the method are discussed.
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2. EPHEMERIS-ONLY TRACKING

To observe an RSO an ephemeris that predicts the posi-
tion and velocity as a function of time is required. We
use Two Line Element Sets in combination with the Sim-
plified General Perturbation (SGP) propagator which en-
ables us to compute the trajectory in real-time. Both the
SGP library and a catalogue of TLEs are available online
[1],[2]. The propagated position and velocity vectors ob-
tained by this model are in a true equator mean equinox
(TEME) frame. They are transformed to a topocentric
spherical coordinate system that is aligned with the axes
of the telescope. The TEME vectors are transformed to
an earth centered earth fixed frame (ECEF) by applying
two transformations that account for the rotation of the
earth and for the polar motion. An intermediate so-called
pseudo earth fixed frame (PEF) is reached when only the
Earth rotation is taken into account. The transformation
from ECEF to PEF

rpef = STT · rteme (1)

vpef = STT · vteme − ω × rpef (2)

makes use of the sidereal time matrix ST as well as the
angular velocity of the PEF frame with respect to the
TEME frame ω.

ST =

[cos(θgmst) −sin(θgmst) 0
sin(θgmst) cos(θgmst) 0

0 0 1

]
ω =

[
0
0
ωL

]

The Greenwich mean sidereal time in radians θgmst can
be computed from the universal time UT1 which is cor-
rected for polar motion. The angular velocity of earth ωL
is defined by the World Geodetic System 1984 and is cor-
rected by the Length of Day (LOD) parameter. The earth
orientation parameters xp and yp define the polar motion
matrix

PM =

[ cos(xp) 0 −sin(xp)
sin(xp)sin(yp) cos(yp) cos(xp)sin(yp)
sin(xp)cos(yp) −sin(yp) cos(xp)cos(yp)

]

which maps the PEF frame to the ECEF frame.

recef = PMT · rpef (3)

vecef = PMT · vpef (4)

The coordinates of the object are transformed to the
topocentric frame by subtracting the position of the ob-
server. Then they are rotated to the north-east-down
(NED) frame using the rotation matrix

R =

[−sin(Φ)cos(Λ) −sin(Φ)sin(Λ) cos(Φ)
−sin(Λ) cos(Λ) 0

−cos(Φ)cos(Λ) −cos(Φ)sin(Λ) −sin(Φ)

]

which is a function of the geodetic latitude Φ and longi-
tude Λ of the observer. The NED coordinates

rned = R ·
(
recef − robs

)
(5)

vned = R · vecef (6)

are used to compute the azimuth ϕ and elevation λ of the
RSO.

ϕ = atan2
(
yned, xned

)
(7)

λ = atan2
(
− zned,

√
x2

ned + y2ned

)
(8)

The earth orientation parameters xp, yp, LOD and
(UT1− UTC) are also made available on Celestrak.org
[1].

2.1. Telescope Control using Velocity Inputs

The telescope features an Astronomy Common Object
Model (ASCOM) interface. Using the ASCOM Alpaca
API this interface can be used to control the telescope
via TCP/IP. In this work all communication with the tele-
scope happens through this interface but the concepts also
apply for a more direct connection with the mount such
as a serial interface with the motor controllers. In our
case a program running on the dedicated PC that con-
trols the mount communicates with the motor controllers
through a serial interface and hosts the Alpaca API on the
local network. For the work presented in this section only
three methods of the interface are used. To read the en-
coders the get azimuth and get altitude methods are used.
Optionally a mount model is applied and the elevation
is corrected for refraction. To send velocity commands
to both axes the moveaxis method is used which gives a
velocity command in degrees per second to the specified
axis. A proportional-integral (PI) controller is used to
compute the velocity inputs for both axes from the errors
between the target coordinates and the encoder angles.
The controller is suited for this application since only the
position is measured and adding a filtered derivative term
typically amplifies the high-frequency gain of the sensi-
tivity to measurement noise by an order of magnitude [4].
When the steady state angular velocity is added as a feed-
forward term to the output of the PI controller a constant
velocity signal can be tracked with zero steady state er-
ror [5]. The high-level control law for both axes is given
by equation 9. The proportional and integral gains are
denoted by Kp and Ki, respectively. The angle θd and
the angular velocity θ̇d are the desired values and θ is the
measured angle. The angular rate θ̇ is the feedback con-
trol input to the axis.

θ̇ = θ̇d +Kp · (θd − θ) +Ki

∫ t

0

(θd − θ)dτ (9)

For the integral term back-calculation is used to prevent
windup in case the actuators saturate. Special care has to
be taken to avoid hitting the axes limits at great speed or
exceeding them. If the target angle θd is outside the al-
lowed range it is clamped to the boundaries [θmin, θmax].
Near these limits, the reference angular rate θ̇d is modi-
fied to reach zero at the boundary. The desired behav-
ior is a linear increase in breaking torque when a limit
is approached at a given velocity. The maximum rate of



change of the acceleration Jmax and the maximum ve-
locity of the actuator θ̇max dictate the required braking
distance.

△Tbreak =

√
2θ̇max

Jmax
(10)

△θbreak = θ̇max · △Tbreak − Jmax
△T 3

break

6
(11)

Therefore, to start breaking early enough the upper and
lower bound

θub = (θmax −△θbreak) θlb = (θmin +△θbreak)

of the regime in which the axis can move at the rate θ̇max

are defined. Beyond this regime, the timing law

α(τ) = −4τ3 + 3τ τ ∈ [−0.5, 0.5] (12)

is used to compute the velocity limit as a function of θ.
The value of α is set to the fraction of the breaking dis-
tance that has been traversed i.e.

α =


θ−θub

△θbreak
θ > θub

θ−θlb
△θbreak

θ < θlb

0 otherwise .

(13)

The fraction has a negative sign at the lower limit and
ranges from −1 to 1. Equation 12 is then solved for τ in
the allowed range. The normalized derivative of 12 then
gives the admissible velocity range

θ̇ ∈



[
−θ̇max, θ̇max(1− 4τ2)

]
θ > θub[

−θ̇max(1− 4τ2), θ̇max

]
θ < θlb[

−θ̇max, θ̇max

]
otherwise .

(14)

This lookup procedure is illustrated in figure 1. In the

α′ = 3− 12τ2

α = 3τ − 4τ3

θ−θub

△θbreak

Figure 1: Graphical lookup of the timing law.

top part equation 12 is shown. The value of θ is greater

than θub and the fraction in 13 takes the value 0.8. This
corresponds to a value of τ of approximately 0.3. In the
lower part the derivative is shown which takes the value
1.89. Thus the angular velocity needs to be in the range
[−θ̇max, 0.63 · θ̇max]. Limiting the feed-forward velocity
term θ̇d in this way leads to a smooth breaking when
approaching the limits.

No slewing is implemented, so the control law for both
axes simply tries to close the gap between the current
pointing and the current location of the object. For large
separations this can be slightly inefficient and it requires
handling passes through zero azimuth. As alternative to
that, the errors between the desired and current angle in
equation 9 for the azimuth and elevation axes

△ϕ = ϕtarget − ϕtelescope

△λ = λtarget − λtelescope

can be transformed to follow the geodesic path on the
hemisphere. The haversine formula

a = sin(
△λ

2
)2 + cos(λtarget) · cos(λtelescope) · sin(

△ϕ

2
)2

θgc = 2 · atan2(
√
a,
√
1− a) (15)

gives the central angle θgc that separates the viewing di-
rection and the target direction. The direction of the of
the geodesic error is given by the terms

sB = cos(λtarget) · sin(△ϕ)

cB = cos(λtelescope) · sin(λtarget)

− sin(λtelescope) · cos(λtarget) · cos(△ϕ)

derived in [3]. The transformed errors△ϕ̃ and△λ̃ point
along the geodesic and have a magnitude proportional to
θgc.

△ϕ̃ =
sB√

s2B + c2B
· 1

cos(λtelescope)
· θgc (16)

△λ̃ =
cB√

s2B + c2B
· θgc (17)

Using these transformed errors only results in the tele-
scope moving along the geodesic if the closed-loop re-
sponse time of both axes is the same.

The high-level tracking control loop using only the
ephemeris is shown in figure 2. The four purple blocks
represent blocking HTTP GET or PUT requests that com-
municate with the mount controller. The orange blocks
represent functions that are executed in sequence by the
tracking process which runs on another machine (using a
different OS) than the one hosting the Alpaca API. The
encoder angles returned by the get azimuth and get el-
evation calls do not feature a timestamp so the system
time is used instead. By getting the timestamp between
the two calls for the encoder readings they don’t have a
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Figure 2: Ephemeris-only tracking loop using the AS-
COM Alpaca API

compound delay. Because of the variable delay between
the timestamp and the encoder readout the angles seen by
the tracking loop feature a correlated error proportional
to the velocity of the axis and the total delay. An addi-
tional problem that may be particular to our system are
erroneous angle readings. Sometimes the API returns the
same reading twice on subsequent calls. To address this
issue the increments between the past 24 angle readings
are kept in memory. The median and the median absolute
deviation (MAD) of the array are computed. If the mag-
nitude of the current increment deviates from the median
by more than two MAD the reading is discarded and re-
placed by the previous value plus the median increment.
This type of outlier filtering has proven to be robust in a
similar application [8]. This filter introduces small errors
when the tracking velocity is suddenly changing which
happens while slewing to a target. During tracking how-
ever, it prevents wrong angle readings from further dete-
riorating the tracking performance. Figure 3 shows the
tracking errors △ϕ and △λ for a Starlink satellite pass
culminating at an elevation of 47 degrees. The RMS for
the azimuth and elevation error seen by the control loop
is 57.81” and 20.82”, respectively. The fact that the mag-
nitude of the azimuth rate is on average 2.9 times greater
than the magnitude of the elevation rate for this pass sup-
ports the hypothesis that these errors are mainly due to
the delay (or lead) of the time stamp. For example, a
25ms variation of the delay between the reading of an en-
coder value and the use of the value in the control loop
for an axis that moves at 0.5 degrees per second leads to
a jump of 45 arcseconds (or 0.2 milliradians). The con-
troller trying to correct for the apparent error exacerbates
the issue. Since these errors are proportional to the an-
gular rates they are especially problematic when tracking
RSOs in LEO.

3. SYSTEM IDENTIFICATION, SIMULATION
AND CONTROLLER DESIGN

To simulate the dynamic response of the telescope and
design and test a controller it can be useful to model both
axes of the telescope using a transfer function. The pro-
cedure to fit such a model [9] is described here for com-
pleteness. A series of experiments is performed in which
a sinusoid input ue is applied to one telescope axis. The
amplitude and phase shift of the sinusoid response can
then be used to fit a discrete-time transfer function. Each
experiment consists of (N + NT ) input values given at
the same fixed sample time Ts and the measured output.
The first NT measurements are discarded because they
contain a transient response. The discrete frequencies Ωl

range from constant input to the Nyquist frequency.

Ωl =
2πl

N
l ∈ {0, ... , N/2} (18)

The amplitude A of the test input is in the order of 0.01
rad/s which is representative of the corrections that are
made by the controller. The test input at timestep k for
one frequency Ωl is given by equation 19.

ue [k] = A · cos(kΩl Ts) (19)
k ∈ {0, ... , N +NT − 1}

The measured output ym consists of a scaled and phase-
shifted sinusoid, a transient response that decays to zero
for increasing k, and some noise.

ym [k] = scale(Ωl) ·A · cos(kΩl Ts − phase(Ωl))
(20)

k ∈ {NT , ... , N +NT − 1}

The estimate of the complex value of the transfer function
H(z) at frequency Ωl is then given by the ratio of the
discrete Fourier transforms of the input and the output.

Ym =

N+NT−1∑
k=NT

ym [k] e−j·Ωl·k (21a)

Ue =

N+NT−1∑
k=NT

ue [k] e
−j·Ωl·k (21b)

Ĥ(Ωl) =
Ym

Ue
(21c)

Using all measured frequencies Ωl the coefficients of
a discrete transfer function can be obtained by a least-
squares fit. The transfer function H(z) is parametrized
by the coefficients bi and ai of the numerator and denom-
inator polynomials. In the following, a transfer function
of order 2 is considered to facilitate notation.

H(z) =
b1z

−1 + b2z
−2

1 + a1z−1 + a2z−2
(22)

= z−1 b1 + b2z
−1

1 + a1z−1 + a2z−2
(23)



Figure 3: Tracking errors seen by the control loop for a Starlink satellite pass culminating at 47 degrees of elevation. The
actual tracking error is not known since this is a daytime pass that was tracked with a closed dome for testing purposes.

Note that the input delay factored out in equation 23 en-
sures that the output can only depend on inputs up to the
previous timestep of the discrete system. For an integrat-
ing plant the transfer function can be constrained to have
a zero at−1 and a pole at +1. This corresponds to rewrit-
ing the equation as

H(z) =
b̃1z

−1

1 + ã1z−1
· Ts

2

1 + z−1

1− z−1
. (24)

To fit the system to the measured frequency responses the
operator z−k is replaced by exp(−j · Ωl · k) for each of
the measured frequencies Ωl.

(1 + a1e
−jΩl + a2e

−j2Ωl) · Ĥ(Ωl)

= b1e
−jΩl + b2e

−j2Ωl (25)

Rewriting equation 25 in terms of the unknown coeffi-
cients of the transfer function gives the complex linear
equation corresponding to the frequency Ωl.

[
e−jΩl e−j2Ωl

(
−e−jΩlĤ(Ωl)

) (
−e−j2ΩlĤ(Ωl)

)]
·

b1
b2
a1
a2

 =
[
Ĥ(Ωl)

]
(26)

Combining the equations of all measured frequencies
gives an overdetermined system of equations. The
complex-valued least-squares solution is obtained by

solving the system below.

(A∗A) ·Θ = A∗ B

A =

e−jΩl e−j2Ωl

(
−e−jΩlĤ(Ωl)

) (
−e−j2ΩlĤ(Ωl)

)
...


Θ =

b1
b2
a1
a2

 B =

[
Ĥ(Ωl)

...

]
(27)

To ensure the coefficient vector Θ is real-valued, the real
and imaginary parts of equation 27 are stacked.

AR ·Θ = BR

AR =

[
Re(A∗A)
Im(A∗A)

]
BR =

[
Re(A∗B)
Im(A∗B)

] (28)

The integrator constraint shown in equation 24 can be ex-
pressed by an additional set of equality constraints.

C ·Θ = D

C =

[
0 0 1 1
1 −1 0 0

]
D =

[
−1
0

] (29)

The constrained problem is solved using the null space
method [6]. First a particular solution Θp is determined
that fulfills equation 29. Then the nullspace of C is com-
puted (i.e. a matrix which has all linearly independent
solutions of C ·x = 0 as columns). The matrices ĀR and
B̄R are computed using the nullspace of C and the partic-
ular solution. The projection of the least squares problem
in equation 28 is then solved for Θh. Finally, the solu-
tion to the constrained least squares problem is given by
equation 30e.

N = Null(C) (30a)



ĀR = ARN (30b)

B̄R = BR −AR ·Θp (30c)

ĀR ·Θh = B̄R (30d)

Θ = Θp +N ·Θh (30e)

A MATLAB script that fits such a model to a measured
system response is included in appendix A. Since the az-
imuth inertia is a function of the elevation it makes sense
to perform the system identification experiment at an el-
evation of 45◦ to capture a mean model [7]. A third order
transfer function (i.e. a second order system integrated
once) fits the data well and is used to model the response
of the two axes. The transfer functions are used to sim-
ulate the response of both axes in MATLAB Simulink.
This model is useful to test the implementation of partic-
ular features of the controller such as the back-calculation
and the behavior at the limits. The same code that is used
to control the telescope can be safely tested in this en-
vironment by compiling it as a C S-function. The pro-
portional and integral gains for the azimuth and elevation
axes are obtained using the pidtune function of the MAT-
LAB Control System Toolbox. A target cross-over fre-
quency of 1 rad/s is specified for both axes to achieve an
acceptable settling time.

4. REAL-TIME IMAGE PROCESSING

The goal of the algorithms described in this section is to
keep track of the observed object within the frame and
to detect when the object is lost. The optical tracking
should yield a contiguous set of image coordinates cor-
responding to the tracked object. It should be robust to
disturbances such as a variation in the intensity of the ob-
ject or bright streaks from stars. The two assumptions
made here are that the object only moves by a moderate
number of pixels from one frame to the next and that its
SNR remains above a threshold.

4.1. Optical tracking

The first step consists of recursively moving a small ROI
across the frame, such that the object remains in its cen-
ter. The second step is performing aperture photome-
try on the ROI to obtain centroid coordinates with sub-
pixel precision. The first step makes use of a variation
of the Kanade-Lucas-Tomasi (KLT) feature tracker [11]
called the inverse compositional algorithm [13]. In its
simplest form, this algorithm minimizes the residual sum
of squares between the intensities of a template and a
shifted image. The algorithm is initialized by copying
a subframe of the image to a template. The subframe is
parametrized by the offset (dx, dy) from the origin of the
image and its dimensions Ω. For each subsequent image
an increment of the offset (△dx,△dy) is computed that

minimizes the least squares pixel distance 31 between the
shifted image and the template.∑
x,y∈Ω

[T (x+△dx, y +△dy)− I(x+ dx, y + dy)]
2

(31)
For small increments this expression is well approxi-
mated by the first order Taylor expansion given by 32.

∑
x,y∈Ω

[
T (x, y) +

∂T

∂x
△dx+

∂T

∂y
△dy − I(x+ dx, y + dy)

]2
(32)

The minimum of this expression is given by the linear
system of equations 33.[∑

Ω
∂T
∂x ·

∂T
∂x

∑
Ω

∂T
∂x ·

∂T
∂y∑

Ω
∂T
∂y ·

∂T
∂x

∑
Ω

∂T
∂y ·

∂T
∂y

] [
△dx
△dy

]
=[∑

Ω
∂T
∂x · [I(x+ dx, y + dy)− T (x, y)]∑

Ω
∂T
∂y · [I(x+ dx, y + dy)− T (x, y)]

]
(33)

The hessian matrix on the left-hand side consists of four
scalars that only need to be computed once when setting
the template. The right-hand side is computed for each
frame by subtracting the template from the image at the
offset (dx, dy) and computing the inner product of the
difference and the gradients of the template which are
kept in memory along with the template itself. The offset
is then updated using equation 34.[

dx
dy

]
k+1

=

[
dx
dy

]
k

+

[
△dx
△dy

]
(34)

In general, the offset computed in this way is a float-
ing point number which means that the sub-frame at
I(x + dx, y + dy) is obtained by interpolating between
the pixels of the image. After a few iterations this al-
gorithm converges to the coordinates of the best match of
the template in the image. This best match its not a global
minimum of the error between the template and the image
since the right hand side of equation 33 only considers a
sub-frame of size Ω located at the offset (dx, dy). As the
offset is incrementally changed the subframe is displaced
to a region of the image which ”looks more like the tem-
plate”. The algorithm acts like a dynamic aperture that
is automatically displaced such that the object remains
in its center. The image in our application is an integer-
valued array in which each integer represents the Analog-
to-Digital Units accumulated by the corresponding pixel
on the sensor. Since the KLT tracker is just used to keep
the object in the subframe the offset (dx, dy) doesn’t have
to be accurate to the single pixel. Thus, an integer formu-
lation of the algorithm is used. Since the gradients of the
template are not integer-valued both sides of equation 33
are multiplied by four. The scaled gradients of the tem-
plate are then computed by convolving it with the kernel
[−1, 0, 1] along the respective axis. This convolution re-
duces the size of the image by the first and last row or
column. To end up with a gradient of the same size as the
template the array is padded with one extrapolated row or



column at each end, before the convolution. Since the so-
lution of equation 33 is still rational only its sign is used
to move the offset (dx, dy) by one pixel along the x axis
and one pixel along the y axis. This algorithm can only
converge to a neighborhood with manhattan-distance 1
to the pixel containing the coordinates that minimize the
least squares distance. The Hessian determinant of the
convex minimization problem is non-negative, thus only
the numerator of the solution to equation 33 needs to be
considered to determine the sign.

Algorithm 1 Integer KLT Tracker

1: dx← x0 − w/2
2: dy ← y0 − h/2
3: T ← SUBFRAME(I0, dx, dy, w, h)
4: Gx ← [−1, 0, 1] ∗ T // ∗ is the convolution operator
5: Gy ← [−1, 0, 1]T ∗ T
6: hxx ←

∑
Ω Gx ·Gx // Ω =̂ {x ∈ [1, w], y ∈ [1, h]}

7: hxy ←
∑

Ω Gx ·Gy

8: hyy ←
∑

Ω Gy ·Gy

9: for k = 1, . . . , Nimages do
10: for i = 1, . . . , 10 do
11: M ← SUBFRAME(Ik, dx, dy, w, h)
12: bx ←

∑
Ω Gx · (M − T )

13: by ←
∑

Ω Gy · (M − T )
14: if (hyy · bx > hxy · by) then
15: dx← dx− 1
16: else
17: dx← dx+ 1
18: end if
19: if (hxx · by > hxy · bx) then
20: dy ← dy − 1
21: else
22: dy ← dy + 1
23: end if
24: end for
25: end for
26: procedure SUBFRAME(I, dx, dy, w, h)
27: S ← 0
28: for x = 1, . . . , w do
29: for y = 1, . . . , h do
30: if (x+ dx, y + dy) is inside I then
31: S(x, y)← I(x+ dx, y + dy)
32: end if
33: end for
34: end for
35: return S
36: end procedure

Algorithm 1 has three parameters, the first two being the
height and width of the subframe. The third parameter
is the number of iterations after which the tracker is as-
sumed to have converged. Selecting a number close to
w/2 makes sense because the accumulated offsets △dx
and△dy should remain smaller than that. Note that if the
tracker loses the object the number of iterations also dic-
tates how fast the algorithm gets lost in the image. If the
object is non-resolved the template could be generated
analytically using a point spread function. This would be
especially useful when applying the algorithm in parallel
to track multiple similar point sources. If the subframe

does not contain an object the tracker is lost and the en-
tire next frame needs to be scanned for a good feature
to track. The hessian matrix seen on the left hand side
of equation 33 needs to have two large eigenvalues that
do not differ by several orders of magnitude [12]. To find
the best subframe within the image, which hopefully con-
tains the tracked object, the gradients of the entire frame
are computed using the same functions as in algorithm 1.
The three components of the symmetric hessian are then
computed for cells that measure one fourth of the sub-
frame size. For every combination of four neighboring
cells the hessian is then computed by summing each of
the three components over the four cells. The eigenvalues
are then given by the roots of the characteristic polyno-
mial as expressed in equation 35. The subframe with the
largest minor eigenvalue is then selected and the object
is centered in the frame using algorithm 2. This works
well enough if there is a single bright target in the frame
and no substantial disturbances such as bright stars in the
background. If this is not the case a more elaborate reset-
ting of the tracker or intervention by a human observer is
required.

λ1,2 =
(hxx + hyy)±

√
(hxx − hyy)2 + 4 · h2

xy

2
(35)

4.2. Object Detection

The second step takes the best match of the template in
the current image obtained by applying algorithm 1 and
computes the centroid of the object. The background is
estimated by the median intensity within an annulus of
fixed size centered in the subframe M . The median is
an integer pixel value obtained by applying the select al-
gorithm from [10]. Using the median as a threshold a
bitmap of the ROI is generated encoding all pixels with
values above the median as 1 and all others as 0. Then
an erosion procedure consisting of bit-wise operations is
applied to the bitmap five times. The erosion procedure
counts how many bits are set within a 3x3 neighborhood
around each pixel. If the sum exceeds an integer k the
pixel is left unchanged otherwise it is set to 0. The inte-
ger k is incremented in each pass of the erosion procedure
and takes the values {4, 5, 6, 7, 8}. This removes every-
thing but large patches that are above the noise level as
shown in figure 4. If the entire ROI is filled with Pois-
son noise with an expected value of λ a pixel has a value
greater than λ with the probability p+.

p+ = 1−
λ∑

k=0

λke−λ

k!
(36)

The probability that any κ of the 8 neighboring pixels are
also greater than λ is given by the binomial distribution

(
8

κ

)
pκ+(1− p+)

8−κ.



Summing the probabilities that zero, one, or two neigh-
boring pixels have a value greater than λ and taking the
complement

1−
2∑

κ=0

(
8

κ

)
pκ+(1− p+)

8−κ

gives the probability that there are 3 or more neighboring
pixels around the central pixel that have a value greater
than λ. Thus, the probability that a pixel and more than
three of its neighbors are above the expected value is then
given by equation 37.

p4 = p+ · (1−
2∑

κ=0

(
8

κ

)
pκ+(1− p+)

(8−κ)) (37)

Algorithm 2 Object detection

1: M ← SUBFRAME(I0, dx
∗, dy∗, w, h)

2: tmp← COPYRING(M, ri, ro)
3: med← MEDIAN(tmp)
4: B ← (M > med)
5: for k = 4, . . . , 8 do
6: B ← ERODE(B, k)
7: end for
8: for k = 3, . . . , 0 do
9: B ← DILATE(B, k)

10: end for
11: mx ← 0
12: my ← 0
13: s← 0
14: for x = 1, . . . , w do
15: for y = 1, . . . , h do
16: if B(x, y) then
17: mx ← mx + x ·M(x, y)
18: my ← my + y ·M(x, y)
19: s← s+M(x, y)
20: end if
21: end for
22: end for
23: xc ← dx∗ + mx

s − 0.5

24: yc ← dy∗ +
my

s − 0.5
25: procedure ERODE(B, k)
26: return B ∩ ((B ∗ 13×3) > k)
27: end procedure
28: procedure DILATE(B, k)
29: return ((B ∗ 13×3) > k)
30: end procedure

This corresponds to the probability that a pixel survives
a pass of the erosion procedure with k = 4. The proba-
bility that it survives all 5 passes with increasing values
of k is in the order of 10−5 for realistic values of λ. De-
pending on the size of the ROI this value can be used
to set a threshold number of pixels left after the erosion
below which the tracker is considered lost. Since the ero-
sion procedure also shrinks the patch containing the ob-
ject a similar procedure referred to as dilation is applied
four times. The dilation procedure sets all bits that have

more than k neighbors regardless of their previous val-
ues. To ensure the patch does in fact grow k takes the
values {3, 2, 1, 0}. As can be seen in figure 4 the dila-
tion passes start by filling holes and concavities of the
signal patch for k = 3 and finish by adding a one pixel
offset around the patch for k = 0. If the number of set
bits in the bitmap indicate that there is an object in the
subframe the centroid is computed using the bitmap as a
mask. Finally, the coordinates of the subframe dx and dy
are adjusted to the nearest integer values that center the
object in the subframe.

↓ erosion

↓ dilation

Figure 4: Inverted subframe containing object partially
occluded by clouds (top), Eroded bitmap of the subframe,
the brightest shade indicates the pixels left after five iter-
ations (middle), Bitmap after dilation, the brightest shade
corresponds to the bitmap before dilation (bottom)

5. ACTIVE TRACKING USING OPTICAL FEED-
BACK

Some challenges arise when the ephemeris-only tracking
is combined with the optically measured tracking errors.
The tracking loop shown in figure 2 does not have a con-
stant runtime due to the delays of the blocking function
calls. Waiting a full timestep Ts after giving the velocity
commands is necessary in order for these inputs to be able
to take effect before the next error measurement is made.
The CMOS Camera on the other hand acquires frames
at a precise sampling rate and the implementation of the
real-time processing runs orders of magnitude faster. The



tracking performance of the ephemeris-only tracking il-
lustrated in figure 3 is not good enough for measurements
because of the varying delay, the missing timestamps, and
the occasional false readings. To address both issues only
the optically measured error is used for tracking, once the
object has been acquired. The computer that is connected
to the camera also runs the high-level controller that gen-
erates the telescope inputs.

5.1. Camera operating states

The operating state of the camera dictates the operating
state of the entire system. The camera is controlled by a
main loop that can switch between three operating states.
These are called idle, stare, and chase in reference to a
similar system developed for laser-ranging [8]. In the idle
mode, the camera does nothing. The purpose of the stare
mode is for a user to see the entire FOV of the sensor in
order to identify and select a target. In the stare mode
the camera is acquiring full frames at the highest fram-
erate for a fixed exposure time, but not faster than two
fps. In addition, a binning of 2x2 is used to reduce the
image size. Both of these measures ensure that the GUI
which uses the Xlib runs smoothly even when the display
is being forwarded through SSH. In the chase mode each
frame is processed in real-time and written to a fits file.
A 240 by 240 pixel subframe centered in the FOV is cap-
tured without binning. The framerate is set to the highest
possible value for the exposure time but not faster than
20 fps. Switching between the states is achieved by a
single character input buffer that is updated in every iter-
ation of the main loop. The characters ’i’,’s’, and ’c’ are
the commands for the corresponding mode and they are
input by the user through the GUI. While in chase mode
the two algorithms described in the previous section are
used to track a 32x32 pixel ROI containing the object and
to compute its centroid. The coordinates of the center of
the frame are subtracted from the centroid coordinates to
obtain deviations in image coordinates. These errors then
need to be transformed to normal coordinates ξ,η. Since
the CMOS camera is attached to a Nasmyth port without
derotator this transformation is a function of the elevation
and takes the form shown in equation 38 for our config-
uration. The angle β is the sum of a constant offset and
the elevation of the telescope. The scaling is given by
the ratio of the pixel size wp and the focal length of the
telescope f .[

ξ
η

]
=

wp

f

[
cos(β) sin(β)
−sin(β) cos(β)

]
·
[
dx
dy

]
(38)

5.2. Telescope Control with optical feedback

Combining the described telescope control and the opti-
cal tracking of the object in the frame enables the system
to track using an optical error.

First, the ephemeris-only tracking is used to acquire the
object in the image using the stare mode of the camera.

The object is selected by the observer clicking on it on the
GUI. The user input is transformed to image coordinates
and then to the local coordinates ξ,η. These are added
to the ephemeris position which centers the object in the
frame. When the object is centered in the full frame the
observer gives the command to switch to the chase mode.
The control loop switches to the optical feedback mode
which entirely relies on the ephemeris of the object and
the observed tracking error. The errors △ϕ,△λ are re-
placed by the local coordinates ξ,η. This eliminates the
need for the two API calls getting the encoder readings. It
also ties the sampling rate of the control loop to the acqui-
sition framerate of the camera. To ensure the two remain
synchronous the camera is used as trigger for the control
loop. Whenever a new frame has been acquired, the real-
time image processing is performed. After the centroid
has been computed the thread running the camera state
machine raises a condition which signals the control loop
of the telescope to compute new velocity inputs and send
them to the axes. Since the processing of the frame incurs
an almost constant delay the variation of the timestamp is
now much lower and so should be the tracking RMS. This
is indeed the case for the pass of Ajisai shown in figure 6
since the image errors dx and dy have an RMS of 0.81”
and 0.94”, respectively.
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Figure 5: Optical feedback tracking using the ASCOM
Alpaca API



Figure 6: Tracking errors along the image axes for a zenith pass of Ajisai (top and center) and the light curve generated
from the tracking frames (bottom).

6. RESULTS AND DISCUSSION

The 6 minute observation of Ajisai shown in figure 6 is
the second half of a zenith pass and has a tracking rms on
the sensor of 1.24”. An uninterrupted 11 minute obser-
vation of LCS 1 acquired 20 minutes earlier with a cul-
mination at 47 degrees has a tracking rms of 1.06”. A 1
minute observation of a starlink satellite that entered the
earth shadow at an elevation of 55 degrees after a culmi-
nation at 57 degrees has a tracking rms of 4.46”. This
is in part due to the brightness of the object which led
to the frames being overexposed. A circle with a radius
of 10 pixels (corresponding to 2.4”) is saturated which
makes the centroid computed with algorithm 2 become
the geometric center of the signal patch. Another artifact
that can be observed for the bright flashes of the Ajisai
pass is that in a few frames the entire annulus used for
the background estimation is covered by the bright sig-
nal. In these frames the computed median is much higher
than the true background so the object detection throws
a false negative. This does not disrupt the tracking since
no correction to the angular rates is made when the opti-
cal tracker is lost. In the subsequent frame the specular
flash is over and the target is automatically reacquired.
The relative magnitude shown in figure 6 illustrates the
robustness of the real-time image processing to specu-
lar flashes. The observation of the starlink satellite en-
tering the earth shadow helps the understanding of the
behavior of the optical tracking at low SNR. If the tem-

plate of the object features strong gradients with a bright
spot in the center algorithm 1 doesn’t lose the object even
if it becomes very faint. Algorithm 2 however with the
fixed number of iterations and pre-defined values of k
soon indicates that the object has been lost. This triggers
the reset procedure that looks for the best hessian in the
subframe which will result in a new template with much
smaller gradients. Thus in order to track low SNR targets
the following measures can be taken: An artificial tem-
plate that is much brighter than the actual signal and has
strong gradients can be used to ensure algorithm 1 keeps
track of the object. The threshold number of pixels left
after the erosion procedure can be lowered in order to re-
duce the number of false negatives of the object detection.
The number of iterations and the number of neighbors for
both the erosion and dilation can be adapted.

One of the main limitations of the method is the
ephemeris-only tracking performance illustrated in figure
2. Especially for RSOs in LEO below 1000km altitude
a noticeable wobble can be observed when manually se-
lecting the target in stare mode. If the Alpaca API would
return timestamps with the encoder readings this perfor-
mance could be improved. A much more severe limita-
tion is that the sampling time of the discrete controller
is directly tied to the exposure time of the camera. For
many targets the assumption can be made that the angu-
lar velocities remain constant during one full exposure
time, for the LEO observations an exposure time of a 0.1
seconds and a frame rate of 9.87 fps was used. Objects in



MEO and GEO usually need exposure times of 1 second
or more but since their angular rates are much smaller the
reduced sampling time is not an issue and even improves
stability. However tracking fast-moving low-SNR objects
or targets that are emitting optical signals such as LED-
SAT may prove to be challenging with this method. For
our application, the tracking performance of this system
is sufficient. The use of the ASCOM Alpaca API and just
the most basic functionalities of the mount should make
this method easy to generalize to other telescopes. The
camera being integrated with the PC that is running the
high-level controller should not be an issue, since mod-
ern CMOS cameras and industrial PCs are portable and
can easily be shipped whereas telescopes with an aper-
ture of 80 cm are not. Also the sensor that is being used in
parallel to the tracking CMOS camera is completely inde-
pendent from the system. Our application is SPAD pho-
tometry but e.g. spectroscopic measurements of RSOs
may have very similar requirements. The tasks of the op-
erator i.e. finding and selecting the target and switching
the operating mode should be easy to automate. Doing
so would enable the system to acquire light curves au-
tonomously and even if some have to be discarded the
productivity of the sensor would likely exceed what can
be achieved by human observers. A beneficial side-effect
would be that a GUI that displays the footage as it is ac-
quired would then be redundant, which would simplify
the software implementation. Finally, a more inciden-
tal feature of the system is that it does not rely on high-
precision encoders. Any encoder precise enough to keep
the object in the FOV in the stare mode will do.

7. SUMMARY

For non-resolving optical sensors tracking errors result in
the observed RSO leaving the FOV of the sensor. To deal
with this issue, either highly accurate ephemerides and
a well-calibrated telescope or active tracking is required.
A framework that is based on a TCP/IP interface to the
mount controller of the telescope and a custom program
for a CMOS camera is presented. The solution should
be applicable to other telescopes since only a few param-
eters need to be determined in a structured way. Some
of the lag that is inherent to network communication can
be avoided by closing the control loop through optical
feedback. This requires robust algorithms that track and
detect the object. Our solution is able to track calibra-
tion targets in LEO with an RMS in the order of 1”.
The presented method could be further developed for au-
tonomous acquisition of light curves and may lower the
requirements for the encoders of SST sensors.
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A. SYSTEM IDENTIFICATION SCRIPT



%% system identification script
% revolute joint controlled by velocity inputs
clear all; close all; clc;
sps = 10; % sampling rate
N_T = 10 * sps; % skip 10s transient response
N = 256+1;
l = [1,2,3,4,6,8,12,16,24,32,48,64].';
omega = 2*pi*l./N; % subset of discrete frequencies
A = 0.01; % input amplitude = 0.01 rad / s
i = [0:(N_T + N-2)];
% input matrix uexp: each row corresponds to an experiment
% consisting of N_T + N inputs to the axis.
uexp = A * cos(omega * i);
% output matrix ymeas: each row corresponds to the measured output
ymeas = zeros(length(omega),length(i));
% --- fill ymeas with "measured" outputs --- %
b = conv([0.0 0.03 0.002],[1, 1])
a = conv([1 -1.2 0.25],[1,-1])
noise = 0.001*randn(size(uexp));
ymeas = filter(b, a, uexp.').' + noise;
% --- remove bias --- %
ymeas = ymeas - mean(ymeas(:,N_T:(N_T + N-1)),2)*ones(1,(N_T + N-1));
% --- fit transfer function --- %
mask = [zeros(size(l,1),N_T),ones(size(l,1),N-1)];
Ym = sum( ymeas .* exp(-j*omega*i) .* mask ,2);
Ue = sum( uexp .* exp(-j*omega*i) .* mask ,2);
Hest = Ym./Ue;
% --- order of transfer function --- %
na = 4; % degree of denominator N is (na-1)
nb = 3; % degree of numerator M is (nc+nb-1)
nc = 1; % system delay
lhs = exp(-j*omega*[0:(na-1)]).*Hest;
rhs = exp(-j*omega*[nc:(nb + nc -1)]);
B = lhs(:,1);
A = [rhs, -lhs(:,2:end)];
ACA = A'*A;
ACB = A'*B;
AR = [real(ACA);imag(ACA)];
BR = [real(ACB);imag(ACB)];
% --- integrating plant constraint --- %
C = [zeros(1,nb+nc),ones(1,na-1);

2*mod([1:nb+nc],2) - ones(1,nb+nc),zeros(1,na-1)];
D = [-1;0];
C = C(:,(1+nc):end);
theta_p = C\D;
N = null(C);
ARbar = AR*N;
BRbar = BR - AR*theta_p;
theta_h = lsqr(ARbar,BRbar);
theta = theta_p + N*theta_h;
% --- unconstrained solution --- %
%theta = lsqr(AR,BR);
b = [zeros(1,nc),theta(1:nb).']
a = [1,theta(nb+1:end).']
sysfit = tf(b,a,1/sps);



% --- bode plot --- %
wmeas = omega*sps;
fmeas = wmeas/(2*pi);
[mag,phas,wout] = bode(sysfit);
fout = wout/(2*pi);
magfit = mag2db(squeeze(mag));
phasfit = squeeze(phas);
if any(phasfit > 0)

phasfit = phasfit - 360;
end
tiledlayout(2,1)
nexttile
scatter(fmeas,mag2db(abs(Hest)),'+k')
hold on
semilogx(fout,magfit,'k')
ylim([-50,50])
yticks([-40:20:40])
ylabel("[dB]")
xline(sps/2)
hold off
set(gca,'xscale','log')
grid on
box on
title('magnitude')
nexttile
scatter(fmeas,phase(Hest)/pi*180,'+k')
hold on
semilogx(fout,phasfit,'k')
ylim([-300,0])
ylabel("[deg]")
xlabel("[Hz]")
xline(sps/2)
hold off
set(gca,'xscale','log')
grid on
box on
title('phase')
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