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Abstract 

Space debris is becoming a major threat for functional 
spacecraft. The debris population needs to be monitored 
and catalogued to better characterize the space 
environment. Optical surveys is one mean to get 
information about its population distribution. The 
observations acquired in optical surveys are sparse and 
cover a very small part of the orbit, hence the initial orbit 
determination becomes challenging. Commonly, two 
observation series are associated together to find out if 
they belong to the same object and an initial orbit is 
computed. The latter can be performed using the 
Optimized Boundary Value Initial Orbit Determination 
(OBVIOD) approach, which is an existing method to 
associate short-arc angles-only observations. In the 
original version of this method, the initial orbit 
determination takes place by solving the Lambert’s 
problem with a model assuming pure Keplerian orbits 
without including perturbations. In this work, to include 
the latter we use a so-called shooting scheme. This 
approach takes a hypothesis at the initial boundary and 
propagates it to the second boundary, where the 
computed value and the original boundary value are 
compared. The hypothesis, which gives the desired 
output at the second boundary, is accepted as the solution. 
In the proposed algorithm, the propagation from the 
initial boundary to the final one involves perturbations 
such as solar radiation pressure, Earth’s geopotential 
terms, solar and lunar gravitational forces. A root-finding 
Newton method is used inside the shooting iteration. An 
additional difficulty in the proposed algorithm arises in 
multi-revolutions scenarios, where multiple solutions of 
the Lambert problem are possible. Tests were done using 
simulated short-arc angles-only observations, separated 
by single or multiple revolutions, and different area-to-
mass ratio values for the observed objects. The 
performance of the orbit determination procedure is 
evaluated in the different scenarios.  

1 Introduction 

The increasing population of space debris poses a serious 
threat to spacecraft in orbit. Therefore monitoring of the 
space objects population is of fundamental importance to 
prevent risks in the space environment. Monitoring can 
be performed with passive optical surveys, in which the 
observations are sparse and cover a very small part of the 
orbit. This makes the initial orbit determination out of 

these observations difficult. The sparse and short 
sequences of observations are called tracklets and have 
to be correlated in a process called tracklet correlation 
[RD-1]. Different methods were proposed to approach 
the correlation problem. In general, a hypothetical orbit 
in common for two tracklets is calculated. If the orbit 
matches the observations, it is assumed that the tracklets 
are associated to the same object and the correlation is 
positive. The methods might use an initial value or a 
boundary value formulation. The solution space of the 
problem can be restricted to a certain admissible region 
and the observations are usually reduced to so-called 
attributables [RD-2].  
In the methods based on a boundary value scheme the 
range hypotheses at two epochs are taken to calculate an 
orbit common to the two attributables and the matching 
is evaluated to accept the correlation. Here, the ranges 
together with the angles characterize a Lambert’s 
problem. The solution in the range space can be 
calculated e.g. with an optimization scheme [RD-3]. This 
approach is referred as Optimized Boundary Value Initial 
Orbit Determination (OBVIOD) method. Then the initial 
orbit calculated using the correlation algorithm is 
commonly improved with e.g. a batch least squares 
procedure making use of all the available observations.  
In the present paper we want to extend the OBVIOD 
formulation, since the Lambert solution takes into 
account only pure Keplerian orbits and not additional 
perturbations. One way to consider perturbations is the 
shooting method [RD-5]. In the latter one iterates over 
possible initial values at the first boundary and check the 
propagated values with the boundary conditions at the 
second epoch. The initial value that better matches the 
boundary is the selected solution. In the propagation the 
Earth’s geopotential terms, lunisolar gravitational forces, 
and solar radiation pressure (SRP) are treated. In a 
geostationary regime the SRP forces start to be relevant 
especially after several orbital revolutions and if the 
objects have a high area-to-mass ratio (AMR). The 
shooting scheme can be solved with a Newton algorithm, 
or e.g. a bisection approach [RD-4], while the 
optimization in the range space can be formulated as a 
least squares problem or, as in the original work, 
applying a Broyden-Fletcher-Goldfarb-Shanno (BFGS) 
algorithm [RD-5]. Moreover, the shooting arc can be 
divided into shorter intervals in a multiple shooting 
procedure to improve the algorithm performance. In this 
work we will consider only the combination of single 
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shooting with Newton and least squares algorithms. The 
analysis will address the accuracy dependence of the 
proposed method from the arc length between the 
tracklets and the AMR values.  

2 Optimized boundary value method 

Tracklets are short-arc series of topocentric 
measurements in right ascension 𝛼𝛼 and declination 𝛿𝛿, 
from several seconds to few minutes long. The 
attributable is a reduced form of a tracklet at the epoch t: 

𝐀𝐀𝑡𝑡 = �𝛼𝛼, �̇�𝛼, 𝛿𝛿, �̇�𝛿�
𝑡𝑡
 (1) 

where the angular rates are computed through a linear 
regression. The boundary value problem is expressed 
with the angular positions 𝛼𝛼1,2,𝛿𝛿1,2 at the boundary 
epochs 𝑡𝑡1, 𝑡𝑡2 and with hypothetical topocentric ranges 
𝜌𝜌1,𝜌𝜌2. From these parameters the related orbit, and thus 
the angular rates 𝛼𝛼′̇ 1,2,𝛿𝛿′̇ 1,2, can be computed with a 
Lambert solver [RD-6]. The difference between the 
computed 𝛼𝛼′̇ 1,2,𝛿𝛿′̇ 1,2 and the observed rates �̇�𝛼1,2, �̇�𝛿1,2 is 
expressed as Mahalanobis distance: 

𝑑𝑑M = �(�̇�𝒛 − �̇�𝒛′)T𝐂𝐂−1(�̇�𝒛 − �̇�𝒛′) (2) 

where  �̇�𝒛 = ��̇�𝛼1, �̇�𝛿1, �̇�𝛼2, �̇�𝛿2�, �̇�𝒛′ = �𝛼𝛼′̇ 1,𝛿𝛿′̇ 1,𝛼𝛼′̇ 2,𝛿𝛿′̇ 2�, and 
𝐂𝐂 = 𝐂𝐂�̇�𝒛 + 𝐂𝐂�̇�𝒛′ is the sum of the covariance matrices 
related to �̇�𝒛 and �̇�𝒛′. The solution of the orbital problem is 
searched minimizing the distance function 𝑑𝑑M in the 
space 𝜌𝜌1,𝜌𝜌2. If the latter is smaller than a given threshold, 
the orbit is compatible with both tracklets, and the 
correlation accepted. 

3 Shooting method 

The equations of motion of the orbital problem can be 
written as first-order differential equations 

�̇�𝐱(𝑡𝑡) = 𝐟𝐟(𝑡𝑡, 𝐱𝐱(𝑡𝑡),𝛌𝛌) (3) 

where 𝐱𝐱(𝑡𝑡) is the state vector with positions and 
velocities, and 𝛌𝛌 are optional parameters. Given an initial 
value 𝐱𝐱(𝑡𝑡1) = 𝐱𝐱1 we can integrate Eq. (3) and compute 
𝐱𝐱(𝑡𝑡2) = 𝐱𝐱2 at a later time 𝑡𝑡2. The initial value 𝐱𝐱1 is the 
variable to be optimized to fulfil the condition at 𝑡𝑡2. In 
our case the position vectors 𝐫𝐫1(𝑡𝑡1) and 𝐫𝐫2(𝑡𝑡2) define the 
boundary conditions and the shooting iteration searches 
for the appropriate initial velocity vector 𝐯𝐯1(𝑡𝑡1) that 
fulfils the condition at 𝑡𝑡2. We define explicitly 𝐱𝐱 =
(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑥𝑥,̇ 𝑦𝑦,̇ �̇�𝑧) and the constraints 

𝐅𝐅(𝐱𝐱) = �
𝑥𝑥
𝑦𝑦
𝑧𝑧
� (𝑡𝑡2) − 𝐫𝐫2(𝑡𝑡2) = 0. (4) 

The partial derivatives w.r.t. to the initial velocities are 

�
𝜕𝜕𝐅𝐅(𝐱𝐱)
𝜕𝜕𝐱𝐱

� =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝜕𝑥𝑥(𝑡𝑡2)
𝜕𝜕�̇�𝑥(𝑡𝑡1)

𝜕𝜕𝑥𝑥(𝑡𝑡2)
𝜕𝜕�̇�𝑦(𝑡𝑡1)

𝜕𝜕𝑥𝑥(𝑡𝑡2)
𝜕𝜕�̇�𝑧(𝑡𝑡1)

 

𝜕𝜕𝑦𝑦(𝑡𝑡2)
𝜕𝜕�̇�𝑥(𝑡𝑡1)

𝜕𝜕𝑦𝑦(𝑡𝑡2)
𝜕𝜕�̇�𝑦(𝑡𝑡1)
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⎥
⎥
⎥
⎥
⎥
⎤

 (5) 

To find the solution 𝐱𝐱0 the following Newton iteration 
scheme is applied: 

𝐱𝐱𝑗𝑗+1 = 𝐱𝐱𝑗𝑗 − �
𝜕𝜕𝐅𝐅(𝐱𝐱𝑗𝑗)
𝜕𝜕𝐱𝐱𝑗𝑗

�
−1

𝐅𝐅(𝐱𝐱𝑗𝑗) (6) 

4 Boundary value problem with shooting 

In the proposed algorithm, the optimized search in the 
(𝜌𝜌1,𝜌𝜌2) space is performed with a least squares approach 
and the Lambert solver is replaced by a shooting 
iteration. The least squares problem was addressed with 
a Gauss-Newton algorithm. Since the resolution matrix 
is often nearly singular, a Singular Value Decomposition 
was opted for its inversion. The whole structure consists 
of a shooting iteration within an optimization iteration 
(Figure 1): 
• The shooting iteration goes over the initial velocity 

given the boundaries 𝜌𝜌1,𝛼𝛼1,𝛿𝛿1 and 𝜌𝜌2,𝛼𝛼2,𝛿𝛿2. 
• The optimization iteration goes over 𝜌𝜌1 and 𝜌𝜌2 given 

�̇�𝛼1, �̇�𝛿1 and �̇�𝛼2, �̇�𝛿2 as discriminators in Eq. (2). 

 
Figure 1: Scheme of algorithm. 

The shooting structure for the Lambert problem takes 
position vectors 𝐫𝐫1(𝑡𝑡1) and 𝐫𝐫2(𝑡𝑡2) and loops over the 
initial velocity 𝐯𝐯1(𝑡𝑡1). The positions 𝛼𝛼1,2,𝛿𝛿1,2 at the 
epochs 𝑡𝑡1, 𝑡𝑡2 and the topocentric ranges 𝜌𝜌1,𝜌𝜌2 are 
transformed to the geocentric vectors 𝒓𝒓1,𝒓𝒓2 required by 
the Lambert problem. The initial velocity is related to 
�̇�𝜌1, �̇�𝛼1, �̇�𝛿1 and the solution has to match the boundaries 
𝜌𝜌1,𝛼𝛼1, 𝛿𝛿1 and 𝜌𝜌2,𝛼𝛼2,𝛿𝛿2. As initial guess for �̇�𝜌1, �̇�𝛼1, �̇�𝛿1 in 
the shooting procedure the values provided by the 
unperturbed Lambert solver [RD-6] are taken.  
In general, there are multiple solutions to the Lambert 
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problem. Even if the prograde/retrograde sense of motion 
and the number of orbital revolutions are known, two 
solutions are possible. This forces to identify the correct 
solution at any optimization iteration step. Empirically, 
we can choose the solution with values closer to the 
measured angular rates, assuming that this is more likely 
to be the correct one. Based on the obtained results this 
seems to be a valid procedure in those cases where the 
two solutions are not too close. The latter situation 
depends on the geometry of the Lambert problem, 
specifically on the interval between the tracklets. In the 
scenarios simulated in this work no problematic 
convergence behavior was identified.  

5 Results 

The proposed method was applied to simulated 
observations in the geostationary region. We assume 
tracklets of 5 measurements separated by 30 s and 
astrometric accuracy around 0.5”. Two observed fields 
separated by 15° are simulated: objects observed in the 
first field at the orbital perigee are observed later again in 
a field shifted of 15° in right ascension. The second 
observation is generated after one, two, and three orbit 
revolutions. In the propagation, a simulated orbit with 
0.01 eccentricity, lunisolar perturbation, geopotential 
coefficients up to degree and order 4, and Solar Radiation 
Pressure (SRP) were taken into account. The 
implementation in the Orekit library [RD-7] was adopted. 
In the SRP perturbation a simple model with isotropic 
radiation and reflection coefficient equal to 1.0 was 
assumed. Different values of area-to-mass ratio (AMR) 
were taken into account ranging from 0.1 to 10.0 m2/kg. 
The error of the determined orbit is assessed as the 
difference in position and velocity w.r.t. the simulated 
orbit, represented in radial, along-track, and cross-track 
(RSW) components. Table 2 shows the errors for 
different numbers of revolutions and AMR values. The 
norm of the position and velocity error vectors are 
marked in bold. Since the considered tracklets are short, 
typical position uncertainties of several kilometres in the 
computation of the initial orbit determination are 
expected, in agreement with the literature [RD-8]. 
Apparently the number of revolutions between the 
tracklets does not significantly affect the accuracy, given 
that the geometric arc length of 15° between the fields 
remains constant. The position inaccuracy is especially 
big in the radial component, possibly since angles and not 
range measurements are available. Differently, the along-
track component of the velocity has the largest values, 
possibly coming from the derived angular rates. The error 
in position and velocity remains quite similar between 
12’100 and 12’500 m, and between 1.82 and 1.84 m/s, 
respectively. The increase in AMR also does not 
essentially affect the accuracy. These relatively low 
errors indicate that the resulting orbit can be used, 
without incurring convergence problems, as starting 
point to perform an orbit improvement using the single 

measurements in a batch least squares procedure. For 
AMR values of 10.0 m2/kg, the final orbit has errors 
around 2500 m and 1.2 m/s in position and velocity, 
respectively, i.e. the accuracy is acceptable to pursue 
follow-up observations and the build-up of an orbital 
catalogue. 
 

AMR 
[m2/kg] 

1 rev. 2 rev. 3 rev. 

Pos. 
[m] 

Vel. 
[m/s] 

Pos. 
[m] 

Vel. 
[m/s] 

Pos. 
[m] 

Vel. 
[m/s] 

0.1 

12’066 0.12 12’150 0.13 12’175 0.13 

178 1.81 179 1.81 179 1.81 

1’447 0.01 1’458 0.02 1’461 0.02 

12’154 1.82 12’238 1.82 12’264 1.82 

1.0 

12’068 0.12 12’156 0.11 12’185 0.12 

178 1.81 179 1.81 179 1.82 

1’447 0.01 1’459 0.02 1’462 0.02 

12’156 1.82 12’244 1.82 12’275 1.82 

10.0 

12’118 0.09 12’251 0.09 12’333 0.08 

179 1.82 180 1.83 181 1.84 

1’454 0.01 1’470 0.01 1’480 0.01 

12’207 1.83 12’341 1.83 12’423 1.84 

Table 1. Orbital errors for different AMR values and 
numbers of revolutions. The RSW components and in 

bold the norm of the vectors are indicated. 

6 Conclusions 

We extended the OBVIOD method to include orbital 
perturbations using a shooting scheme. In the latter the 
perturbations are included in the numerical propagation 
of the orbit and the search of the initial orbital values is 
performed with a multi-variable Newton algorithm. The 
optimization problem searching for the boundary ranges 
is addressed with a least squares algorithm. A Lambert 
solver provides the starting values of the shooting 
routine. Due to the implicit solution ambiguity in the 
Lambert problem, a discrimination based on the 
measured angular rates was introduced: the constraint 
revealed to be suitable for the simulated observation 
geometry.     
In the simulated observation scenarios different values of 
arc length in the geostationary ring and area-to-mass ratio 
values were assumed.  
The results show that for solar radiation pressure 
perturbations during up to three orbit revolutions and 
assuming AMR values up to 10 m2/kg, the proposed 
method produces an orbit accurate enough to be used as 
a priori state in a least squares orbit improvement based 
on the single measurements. The refined orbits 
supposedly allow for further follow-up observations and 
ultimately for catalogue build-up. Still, other evaluations 
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of the method are necessary with e.g. different 
observation scenarios, orbital shape, measurement noise, 
or objects in another orbital regime. Moreover, the 
performance of the method using real observations will 
need to be investigated in future work.  
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