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Abstract 

Space debris poses threats to functional spacecraft around the Earth due to the possibility of collisions in orbit. The 

debris object population needs to be cataloged to monitor the space environment. Optical surveys result in 

observations of objects on very short arcs (when compared to their orbital period). These short-arc angles-only 

observations are not suitable to derive a reliable orbit, hence two of them are associated together to test if they 

belong to the same object and to compute initial orbits. Initial Orbit determination (IOD) is done using the Optimized 

Boundary Value Initial Orbit Determination (OBVIOD), which is an existing method to associate short-arc optical 

observations. A so-called shooting method is used inside the OBVIOD to include perturbations. This method 

consists of choosing a hypothetical value for a variable at first boundary and propagating to the second boundary. 

The propagation from one boundary to the second includes perturbations such as solar radiation pressure, earth’s 

geopotential terms, solar and lunar gravitational forces. The root-finding method used inside the Shooting procedure 

may take its initial value from the unperturbed solution. However, root-finding methods, like e.g. Newton-Raphson, 

might have difficulties in the convergence or converge to a wrong solution in case the initial value lies far from the 

actual root. In addition, for multiple revolutions scenarios several possible solutions, according to the high and low 

path of the Lambert problem, have to be computed inside the OBVIOD. A root-finding method based on bisection 

is proposed to get global convergence. Constraints originating from an admissible region approach are set to narrow 

down the possible scenarios, which are be computed to find the desired solutions. Both, the proposed method and 

Newton-Raphson are tested for their performance inside the Shooting-OBVIOD. Tests are done using simulated 

short-arc angles-only observations, separated by single or multiple revolutions, and different area-to-mass ratio 

values for the observed objects. The results lead to the conclusion that the proposed method is superior to the 

previous one for use inside OBVIOD to associate short-arc optical observations. 
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Nomenclature 

α: right ascension 

δ: declination 

α̇: right ascension rate   

δ̇: declination rate 

𝜌1: range at first epoch 

𝜌2: range at second epoch 

�̇�1: range rate at first epoch 

𝜌2hyp: hypothesis of range at second epoch 

𝜌2j: range at second epoch 

j: iteration number inside the shooting IOD 

x1: value of free parameter in shooting at iteration 1 

x2: value of free parameter in shooting at iteration 2  

𝑟𝑠: station position 

�⃗�s: station velocity 

�⃗⃗�: the line-of-sight vector  

�̇⃗⃗�: derivative of the line-of-sight vector 

�⃗�: orbital velocity of the object 

G: universal gravitational constant 

M: mass of the Earth 

𝑟: geocentric position of the object 

𝑟1: geocentric position at epoch 1 

𝑟2: geocentric position at epoch 2 

𝑟1
̇ : geocentric velocity at epoch 1 

𝑟2
̇ : geocentric velocity at epoch 2 

𝑎: semi major axis 

𝑛: number of individual measurements in a tracklet 

𝑚: number of revolutions in an orbit 

Ω: right ascension of ascending node 

ω: argument of perigee 

𝜈: true anomaly 

 

1. Introduction 

 Space debris are classified as non-

functional, man-made objects in space with no 

reasonable expectation of assuming or resuming its 

intended function [1]. It is essential to observe and 

catalogue them in order to avoid collisions with the 

active satellites. Optical surveys are conducted to 

observe the objects in the geostationary region. These 

mailto:harleen-kaur.mann@aiub.unibe.ch
mailto:harleen-kaur.mann@aiub.unibe.ch
mailto:alessandro.vananti@aiub.unibe.ch
mailto:thomas.schildknecht@aiub.unibe.ch


71st International Astronautical Congress (IAC) – The CyberSpace Edition, 12-14 October 2020.  
Copyright ©2020 by the International Astronautical Federation (IAF). All rights reserved. 

 

 

IAC-20-A6-9-x57579                                                                                                                                  Page 2 of 7 

surveys yield short sequences of angle 

measurements, called tracklets, which cover a small 

fraction of the overall orbit [2]. Siminski et al. [3] 

proposed an orbit determination method using 

available information of two tracklets. This approach 

works with a boundary-value formulation and uses an 

optimization scheme to find the best fitting orbits 

(OBVIOD). It solves the Lambert problem, a special 

case of the orbital boundary value problem, which 

consists of two position vectors at separate epochs. 

The IOD in OBVIOD provides an unperturbed 

solution.  

In order to add perturbations in the IOD, a so-called 

shooting method is proposed here. Following 

sections will show the working of the latter with two 

different root-finding procedures and compare their 

results. 

 

1.1 Working in OBVIOD 

 The angle measurements consist of series of  

α and δ values. Linear regression is performed over 

these series, resulting in average α, δ values and the 

corresponding α̇ , δ̇ for a mean time. This set of 

values is called the attributable vector [4]. Using the 

attributable vectors over simple measurements 

provides an advantage as the angular rates 

information is now available. Moreover, the mean 

angular positions, rates obtained from the linear 

regression will have higher accuracy with respect to 

the raw observations. 

The next step involves a range hypothesis, 

which is used with the line of sight vectors and station 

positions to compute position vectors. The Lambert’s 

problem is solved, giving velocities at both the 

epochs. The angular rates obtained from the previous 

step are compared with the ones from the attributable 

vector using a loss function. The latter is based on the 

difference between the measured and the modelled 

angular rates scaled by the uncertainty. In this case, 

the Mahalanobis distance is used as the loss function. 
For a distribution 𝑦, with mean �̅� and covariance 
matrix 𝐶𝑦, the Mahalanobis distance for each point 𝑦𝑖  
is defined by [5]: 
 

              𝐷𝑀(𝑦) =  √(𝑦𝑖 − �̅�)𝑇𝐶𝑦(𝑦𝑖 − �̅�)           (1) 

 
 A minimization algorithm called Broyden Fletcher 

Goldfarb Shanno (BFGS) is used to search for the 

loss function minimum. Press et al. [6] briefly explain 

the working of this algorithm. If the Mahalanobis 

distance is below a certain threshold, the tracklets are 

said to be correlated. In other words, they belong to 

the same object. The range hypothesis corresponding 

to the minimum is accepted and the initial orbit is 

computed for these tracklets. Fig. 1 shows the 

schematic of OBVIOD.  

Hypothesis

 

DiscriminatorObservations

Modelled

Lambert IOD

Comparison inside OBVIODState vector �⃗⃗�𝟏, �⃗⃗�𝟐, �̇⃗⃗�𝟏, �̇⃗⃗�𝟐 

�̇�𝟏, �̇�𝟏, �̇�𝟐, �̇�𝟐 

�̇�𝟏, �̇�𝟏, �̇�𝟐, �̇�𝟐 
𝛂𝟏, 𝛅𝟏, 𝛂𝟐, 𝛅𝟐 

𝝆𝟏, 𝝆𝟐 

 
 

Fig. 1. Process Flow in OBVIOD 

 

2.  Shooting method to add perturbations  

This method belongs to the class of two-

point boundary value problems. It treats the boundary 

value problem as an initial value problem. It chooses 

an initial value of the dependent variable at the first 

boundary, propagates the function to arrive at the 

other boundary [6]. This solution is compared with 

the second boundary value. Free parameters at the 

first boundary are adjusted to satisfy the desired 

second boundary value. Fig. 2 shows how the 

different initial values of the dependent variable are 

taken at the first boundary value in order to reach the 

desired boundary value. 

 

 
 

 Fig. 2. Schematic of Shooting method 

  

2.1 Shooting method in OBVIOD 

 The boundary values in the case of 

Shooting-OBVIOD are angular measurements at 

both the epochs. Using the attributable vector one has 

the mean angular positions and rates. The range 

hypothesis is made for both the boundaries. The 

station position and velocity at both the epochs is 

known, the only unknown parameter at the initial 

epoch is �̇�1. It is chosen as the free parameter inside 

Shooting IOD and is hypothesized at the initial 

epoch. The orbit is computed at this epoch and 

propagated to the second epoch. The propagation step 

involves perturbations such as solar radiation 

pressure, Earth’s geopotential terms, solar and lunar 



71st International Astronautical Congress (IAC) – The CyberSpace Edition, 12-14 October 2020.  
Copyright ©2020 by the International Astronautical Federation (IAF). All rights reserved. 

 

 

IAC-20-A6-9-x57579                                                                                                                                  Page 3 of 7 

gravitational forces. The method is described more in 

detail in Sections 2.2 and 2.3. The Shooting IOD 

replaces the Lambert IOD during the minimization of 

the loss function. The resulting schematic of 

Shooting-OBVIOD is shown in Fig. 3. 

 

 

Hypothesis

 

DiscriminatorObservations

Shooting Method 
IOD

Modelled

Comparison inside 
Shooting OBVIOD

𝛂𝟏 ,𝛅𝟏 , 𝛂𝟐 , 𝛅𝟐  

 

𝝆𝟏, 𝝆𝟐 

�⃗⃗�𝟏, �⃗⃗�𝟐, �̇⃗⃗�𝟏, �̇⃗⃗�𝟐 

�̇�𝟏, �̇�𝟏, �̇�𝟐, �̇�𝟐 

�̇�𝟏 , �̇�𝟏 , �̇�𝟐 , �̇�𝟐  

 
 

 

Fig. 3. Process flow in Shooting OBVIOD 

 

 

2.2 Newton Raphson Method 

 The Shooting procedure employs a root-

finding algorithm to find a solution that satisfies the 

desired boundary value. Newton-Raphson method is 

used for this purpose. It extrapolates the local 

derivative to the next estimate of the root [6]. Hence, 

the next estimate of the root becomes: 

 

                           𝑥2 = 𝑥1 −
𝑓(𝑥1)

 𝑓′(𝑥1)
                      (2) 

 

Geometrically it consists of extending the tangent 

line at a current point x1 until it crosses zero, then 

setting the next guess x2 to the abscissa of that zero-

crossing (see Fig. 4).  

 In case of Shooting IOD, it searches a root 

for the function (𝜌2hyp–𝜌2) using the free 

parameter �̇�1. It works well only for local 

convergence and needs a good starting value. It takes 

the first hypothesis for �̇�1 from the unperturbed 

Lambert IOD so that it does not start too far from the 

solution. Using α1, δ1, α̇1, δ̇1, 𝜌1 and  �̇�1 the orbit is 

computed, following which the Keplerian  

propagation is done for half of the iterations. The rest 

of the iterations take advantage of the propagation 

with the earlier mentioned perturbations. Once the 

function value is below tolerance, the iterations are 

stopped and the corresponding �̇�1 is accepted for a 

particular 𝜌1 , 𝜌2. 

 
 

Fig. 4. Function derivative at point 𝑥1 is used to find 

the next estimate 𝑥2 of the function’s root. 

 

This �̇�1  is used to compute orbit for the 𝜌1, 𝜌2 inside 

the BFGS iteration. Fig. 5 shows the scheme of the 

Shooting IOD using the Newton-Raphson method for 

the root search.  

 

Hypothesis

DiscriminatorShooting 

Method IOD

Keplerian propagation followed by
 Propagation with perturbations

State at 
epoch1

State at 
epoch2

Temporary
value

If below tolerance, exit

𝛂𝟏, 𝛅𝟏, 𝛂𝟐, 𝛅𝟐, 𝝆𝟏𝐋 

�̇�𝟏 

�̇�𝟏 + 𝐝�̇�𝟏 

�⃗⃗�𝟏, �̇⃗⃗�𝟏 

�⃗⃗�𝟐, �̇⃗⃗�𝟐 

 

𝝆𝟐𝐣 

𝝆𝟐𝐋 

�⃗⃗�𝟏, �̇⃗⃗�𝟏 , �⃗⃗�𝟐, �̇⃗⃗�𝟐 

 

 Check       
difference

𝝆𝟐 

If above tolerance, 
continue iterations

Iteration j

Comparison inside 
Shooting Method

 
 

 

Fig. 5. Flow diagram of Shooting IOD using 

Newton’s method 

 

2.3 Bisection  

 Newton’s method might have convergence 

issues if the initial estimate is far from the solution. 

In order to avoid such scenarios, a different root 

finding algorithm is needed which is more reliable in 

terms of convergence. 

Bisection is one such method, thus it is used 

to replace the Newton’s method inside the Shooting 

IOD. It works by searching for the point where the 

function changes its sign. The interval containing the 

root needs to be identified to begin the search. An 

interval based on the admissible region for our 
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problem is chosen, see Section 3. A root lies in the 

interval (𝑎, 𝑏) if 𝑓(𝑎) and 𝑓(𝑏) have opposite signs. 

The function is evaluated at the interval’s midpoint 

and its sign is examined. The midpoint is used to 

replace whichever limit has the same sign. After each 

iteration, the bounds containing the root decrease by 

a factor of two. If after n iterations, the root is known 

to be within an interval of size ϵ, then after the next 

iteration it will be within an interval of size ϵ/2. The 

iterations are carried out until the function value is 

below tolerance. Fig. 6 illustrates two points on the 

function, which constitute the boundary of an interval 

that contains a root. This interval can also be called a 

bracket. 

 

 

 
 

Fig. 6. Bracket (𝑎, 𝑏) containing a root 𝑥1 where the 

bisection method will evaluate function signs at the 

subsequent midpoints in the iterations until the 

function value is below a threshold. 

 

2.3.1  Theory and calculation 

 Brackets are searched in the admissible 

region defined by the semi major axis, between 

41,000 km and 43,000 km. The orbital velocity 

expression from the vis-viva equation is:    

 

                         𝑣2 = 𝐺𝑀/((
2

𝑟
) − (

1

𝑎
))                    (3) 

 

If the maximum semi major axis value (43,000 km) 

is substituted in the above quadratic equation, one 

gets two roots for the velocity. The geocentric 

position and velocity as a function of ρ, �̇� can be 

expressed as: 

                         𝑟(𝜌) = 𝑟𝑠 + 𝜌�⃗⃗�                                  (4) 

                         𝑣(𝜌,    �̇�) = �⃗�𝑠 + 𝜌�̇⃗⃗� + �̇��⃗⃗�                  (5) 

The information about 𝑟𝑠 and 𝑣𝑠 is available.  𝑢 and �̇� 

are computed from the angular positions, velocities. 

The only unknown in equation (5), �̇� can be 

computed using velocity values one gets from the 

constraints. Using the values from the semi major 

axis constraints, one obtains a quadratic in range-rate. 

Rearranging equation (3) and using �⃗⃗�, �̇⃗⃗�,  𝜌, �̇� and �⃗�𝑠 

one gets: 

 

         𝑎 =
𝑟𝐺𝑀

2𝐺𝑀 − 𝑟(�̇��⃗⃗� + 𝜌�̇⃗⃗� + �⃗�𝑠)
2               (6) 

 

The roots of this quadratic will correspond to the 

bounds of our function by inserting respective 𝑎 

values. For the minimum value only one value of ρ̇ is 

obtained whereas inserting the maximum value 

results in two values of �̇�. These ρ̇ values are used as 

the starting brackets for the bisection method (see 

Fig. 7). Point C in the figure corresponds to the semi 

major axis minimum on the �̇� axis and points (A, B) 

correspond to the maximum.  Intervals containing 

multiple roots are separated into smaller brackets. 

The Lambert’s problem has multiple possible 

solutions for one or more number of revolutions. 

These solutions are (2𝑚 + 1) in number, where 𝑚 is 

the number of revolutions. For each number of 

revolutions higher than zero, there are two solutions. 

They are called as long-path and short-path orbits. 

For the same value of semi-major axis, the long-path 

orbit will have a higher eccentricity than the short-

path orbit. G. Zhang et al. [7] give more information 

about the multiple-revolution Lambert’s problem.  

In our case, once the brackets containing the 

roots are found, each bracket is followed one by one 

starting from the long-path solutions to the short-path 

solutions. The resulting schematic of the Shooting 

IOD with the Bisection method is shown in Fig. 8. 

 

 
 

Fig. 7.  Brackets for �̇� resulting from the maximum 

semi major axis values A, B and the minimum value 

C. 
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Hypothesis

 

Discriminator
Shooting 

Method IOD

 Propagation with perturbations

State at 
epoch2

Temporary
value

If below tolerance, exit

State at 
epoch1

Iteration j

If above tolerance,
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𝛂𝟏, 𝛅𝟏, 𝛂𝟐, 𝛅𝟐, 𝝆𝟏𝐡𝐲𝐩 

�̇�𝟏 

𝝆𝟐𝐣 

𝝆𝟐𝐡𝐲𝐩 

�̇�𝟏𝐂 +
�̇�𝟏𝐀 + �̇�𝟏𝐁

𝟐
 

 

 

Comparison inside 
Shooting Method

 Check       
difference

𝝆𝟐 

�⃗⃗�𝟏, �̇⃗⃗�𝟏 

�⃗⃗�𝟐, �̇⃗⃗�𝟐 

�⃗⃗�𝟏, �̇⃗⃗�𝟏, �⃗⃗�𝟐, �̇⃗⃗�𝟐 

 
 

Fig. 8. Flow diagram of Shooting IOD using 

Bisection method 

 

 

3. Results and Discussion 

3.1 Simulation of Input files  

 The survey strategy consists of repeatedly 

scanning a declination stripe with a fixed right 

ascension. The declination interval is chosen as ±8° 

for each right ascension. The observations are 

simulated using the coordinates of Zimmerwald 

observatory, Switzerland to get the topocentric 

angular positions over a length of 2 to 3 minutes. The 

two-line-elements (TLEs) used are extracted from the 

Spacetrack objects catalog [8]. Perturbations are 

added for geopotential terms, solar radiation 

pressure, third body attraction forces for Sun and 

Moon. The Orekit library [9] was used for the force 

models. In the following tests, observations 

simulated for the GEO regime are considered. The 

constraints applied on different orbital elements are: 

inclination < 10°, eccentricity < 0.3, semi-major axis 

between 41,000 km and 43,000 km. The Ω, 𝜔 and 𝜈 

are not constrained while simulating the 

observations. A normally distributed optical error of 

one arc second was added for all the observations. 

 

3.2 Tests conducted  

  Tests are conducted by varying the Area-to-

Mass Ratio (AMR) of the objects while simulating 

the observations. The AMR values of 0.01 m2/kg, 0.1 

m2/kg, and 1.0 m2/kg are considered. Two tracklets 

were tested at a time, which were separated by less 

than one, one or two revolutions. The Mahalanobis 

distance threshold chosen was 10, based on the 

strategy mentioned in [4]. The objective is to analyse 

the correlation performance for both the Newton 

Raphson method inside the Shooting OBVIOD and 

the Bisection method inside the Shooting OBVIOD. 

 

Table 1. Results with the Newton Raphson Shooting 

OBVIOD for low AMR ratio. 

No. 

of 

rev

s 

AM

R 

True 

correla

tions 

False 

correla

tions 

Missed 

correlat

ions 

Total 

track

lets 

< 1 0.01 11 0 0 22 

1 0.01 7 0 4 22 

2 0.01 5 0 5 20 

 

Table 2. Results with the Newton Raphson Shooting 

OBVIOD for AMR 0.1 m2/kg.  

No. 

of 

rev

s 

AM

R 

True 

correla

tions 

False 

correla

tions 

Missed 

correlat

ions 

Total 

track

lets 

< 1 0.1 11 0 0 22 

1 0.1 7 0 4 22 

2 0.1 6 0 4 20 

 

Table 3. Results with the Newton Raphson Shooting 

OBVIOD for a higher AMR. 

No. 

of 

rev

s 

AM

R 

True 

correla

tions 

False 

correla

tions 

Missed 

correlat

ions 

Total 

track

lets 

< 1 1.0 11 0 0 22 

1 1.0 7 0 4 22 

2 1.0 6 0 4 20 

 

Table 4. Results with the Bisection Shooting 

OBVIOD for the lowest AMR value considered. 

No. 

of 

rev

s 

AM

R 

True 

correla

tions 

False 

correla

tions 

Missed 

correlat

ions 

Total 

track

lets 

< 1 0.01 11 0 0 22 

1 0.01 11 0 0 22 

2 0.01 10 0 0 20 

 

Table 5. Results with the Bisection Shooting 

OBVIOD for the AMR value of 0.1 m2/kg. 

No. 

of 

rev

s 

AM

R 

True 

correla

tions 

False 

correla

tions 

Missed 

correlat

ions 

Total 

track

lets 

< 1 0.1 11 0 0 22 

1 0.1 11 0 0 22 

2 0.1 10 0 0 20 
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Table 6. Results with the Bisection Shooting 

OBVIOD for the highest AMR considered in the 

tests. 

No. 

of 

rev

s 

AM

R 

True 

correla

tions 

False 

correla

tions 

Missed 

correlat

ions 

Total 

track

lets 

< 1 1.0 11 0 0 22 

1 1.0 11 0 0 22 

2 1.0 10 0 0 20 

 

Table 7. No. of missed correlations for different 

AMR, no. of revolutions. 

No.of 

revs 

AMR(m2 

/kg) 

Newton 

Raphson 

Bisection 

< 1 0.01 0 0 

1 0.01 4 0 

2 0.01 5 0 

< 1 0.1 0 0 

1 0.1 4 0 

2 0.1 4 0 

< 1 1.0 0 0 

1 1.0 3 0 

2 1.0 3 0 

 

Table 1, 2 and 3 show the correlation performance 

when the Newton Raphson method is used for root 

search inside the Shooting OBVIOD. The true 

correlations represent the tracklet pairs, which were 

rightfully associated together. False correlations on 

the other hand show the cases where two tracklets are 

wrongly associated even when they do not belong to 

the same object. The next column of missed 

correlations shows the no. of pairs that could not be 

associated together whereas they truly belong to the 

same object. Table 4, 5 and 6 show the results for the 

same parameters in case of Bisection Shooting 

OBVIOD. All the results are briefly summarized in 

Table 7 to compare the performance of both the 

methods for all the tested scenarios. 

 

3.3 Significance of the Results  

 The Shooting method with the Newton 

Raphson technique is able to correlate all the 

tracklets, which are only a few hours apart or are 

separated by less than one revolution. This applies for 

all the AMR values considered in the tests. However 

when the tracklets are one or more revolutions apart, 

it misses some correlations. Since it takes its initial 

value from the Lambert solution, it tries to find the 

root closest to the unperturbed solution. As 

mentioned in Section 2.1, Newton Raphson method 

works well only for good starting values and may 

diverge otherwise. For the multiple revolution cases 

with the increasing no. of possible solutions, this 

starting value is not accurate enough to lead it to the 

solution. Moreover, for some high AMR cases the 

unperturbed Lambert algorithm does not converge 

and hinders the working of Shooting OBVIOD as 

well. 

The use of Bisection method inside the Shooting 

OBVIOD makes it less dependent from the 

unperturbed Lambert solution. In addition, the use of 

admissible region based on semi-major axis reduces 

the number of possible scenarios to be computed. For 

each bracket that contains a root, bisection converges 

and finds a solution unlike the Newton Raphson 

method. Furthermore, it is not affected by the initial 

boundaries chosen for the bracket as long as the latter 

contains a root. These are the reasons that make the 

Shooting OBVIOD with the Bisection method for the 

root search, a better choice for correlation. 

Furthermore, it is confirmed by the results shown in 

Table 4, 5 and 6.  

 

4. Conclusions  

 The aim of this study was to add 

perturbations in the IOD and choose a suitable root 

search method, which could be used inside the 

Shooting method OBVIOD. The working of the 

Newton Raphson technique inside the OBVIOD was 

shown and corresponding results discussed. The 

limitations included inability to converge in single or 

multiple-revolutions scenarios and sensitivity to the 

initial value. These issues did not limit the proposed 

method based on Bisection. The latter is less 

dependent from the unperturbed Lambert solution 

and reduces the number of possible scenarios to be 

computed. This is achieved due to the use of 

admissible region originating from semi-major axis 

constraints, which also allows one to focus on a 

particular orbital regime.  
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