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Abstract

To cope with the increasing number of objects in space around Earth, the processing of observa-
tions of these objects shall be automated as much as possible. In this work, the automation of three
parts of the maintenance of a space object orbit database, commonly called catalogue, is analysed.
The first one is the association of new measurements with stored orbits in the database based on a
comparison in a common coordinate frame using the Mahalanobis distance under the assumption
of normally distributed errors. It is shown for radar observations, that making this comparison in
either the observation or orbit coordinates is only feasible if the error in the transformed system
is small enough to remain normal after the transformation. Additional work is dedicated to derive
a quality measure from the orbit state and covariance to give feedback, which also considers new
measurements, on the current status or quality of an object in the database. Different concepts
from information theory, namely the entropy and the surprisal, are tested and found to be useful
quantities for these tasks. Future work will need to extend these parameters to consider further
information and test their robustness with large data sets.
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1 Introduction

The continuous increase of the number of objects
in space including both active payloads and debris
is a challenge for the safe operation of satellites
[1]. One of the keys to space safety with regard
to the space object population is the maintenance
of a database containing their orbital information,
commonly called catalogue. This database can be
used for various tasks, e.g. collision avoidance or
re-entry predictions. In order to maintain such a
database, it is necessary to regularly process new ob-
servations. This includes the association of new ob-
servations to orbits in the database as well as creat-
ing new entries for previously uncatalogued objects,
for example by attempting to associate observations
among each other using those observations which

could not be associated to a database object in the
first step. With regard to the possibly large number
of objects in such a database, these tasks should be
performed with as much autonomy as possible.

In the following, it is assumed that a sensor
provides so-called tracklets to the catalogue. A
tracklet is a sequence of observations from a single
object during a pass measured from a single station.
In this paper, mainly radar sensors are considered
as a source of the data. The observables of the radar
are defined as the range ρ, the range-rate ρ̇, azimuth
az and elevation el.

The following analysis considers different steps for
the build-up of a database. The association of a
tracklet to a catalogue orbit will be analysed first,
because it is a prerequisite for the maintenance of a
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catalogue. Afterwards, the confirmation of objects
is based on the assumption that a pairwise associ-
ation of uncorrelated tracklets has been performed,
see e.g. [2], and for simplicity it is also assumed
that these initial correlations are correct. An ob-
ject shall be confirmed if it has a sufficient quality
after the orbit determination from the initial correl-
ations and this quality measure shall also be used to
monitor existing catalogue objects. Here, the term
quality refers to having an orbit which fulfils a per-
formance criterion depending on the application of
the catalogue, e.g. it is accurate enough to allow
a confident association of subsequent measurements
over a defined period of time.

2 Tracklet-Catalogue Association

2.1 Problem Statement

For this part of the paper, it is assumed that
a database of space objects already exists, which
contains orbits and their covariances. If new meas-
urements are received, it shall be tested whether
they originate from an object in the catalogue by
comparing the stored orbits to the measurements.
The uncertainties of the measurements are also as-
sumed to be known. The association between a
catalogue orbit and a tracklet is performed by trans-
forming the measurement and the orbit, propagated
to the measurement epoch, including their uncer-
tainties into the same coordinate system for a com-
parison. The importance of the selection of this co-
ordinate system is due to the transformation of the
covariance matrices, which are assumed to be Gaus-
sian in the original system and shall maintain their
normality after the transformation. For example,
the transformation between the measurement sys-
tem and the orbit state is usually non-linear and
thus for large uncertainties of the orbit this trans-
formation may not lead to a good representation of
the covariance in measurement space. Practically,
this also depends on the observation geometry and
the dynamics of the observed objects.

If both distributions are in the same coordinate
system, which may require the transformation of at
least one of them, one possible measure to compare
them is the Mahalanobis distance. It is based on
a multivariate normal distribution N (~x|~µ,Σ) with
mean ~µ and covariance matrix Σ and it is defined as
the distance from the mean ∆~x = ~x− ~µ normalised
by its covariance matrix [3]:

Md =
√

∆~xT · Σ−1 ·∆~x . (1)

If two different normal distributions N1 and N2

shall be tested whether they could have the same

mean value, the used values are ∆~x = ~µ1 − ~µ2

and Σ = Σ1 + Σ2. The Mahalanobis distance
is χ-distributed and thus allows statistical gating.
Thus, if the Mahalanobis distance is below a given
threshold, the two distributions are assumed to have
the same mean, which in this case means the correl-
ation of the two distributions is accepted.

Because the orbit’s state vector can be trans-
formed into the standard radar and optical observ-
ables, making the association in the measurement
space is always possible. The use of other systems
for the comparison depends on the observables and
is discussed in the following separately for optical
and radar observations. In case of optical measure-
ments, it is not possible to directly transform the
observables into the position-velocity state space of
the orbit, because the range to the detected object
is missing to derive its position. In order to com-
pensate this, one can assume that the range is equi-
valent to the expected value at the measurement
epoch based on the catalogue orbit. Alternatively,
the optical measurements can be projected onto the
orbital plane and the corresponding position is used
to estimate the range [4]. The difference to the
catalogue state is calculated in the cartesian RTN
coordinate system, which originates in the object’s
current cartesian position. Its first axis is aligned
with the radius vector and the second axis points
orthogonally in the direction of motion, but depend-
ing on the orbit’s eccentricity it may not be aligned
exactly with the velocity vector. This approach was
extended by [5] using a curvilinear coordinate sys-
tem according to [6]. In this case, the projection of
the optical measurement into a full state is found
by either searching for a state which sets the radial
position and velocity differences from the catalogue
orbit to zero or by directly minimising the Mahalan-
obis distance between measured and expected pos-
ition. These approaches are useful if the orbit un-
certainties are large and the observation geometry
is such that the transformation from the orbit state
to the measurement space is highly non-linear which
affects the mapping of the covariance onto the meas-
urement space.

Considering radar observations, the range is part
of the measurement and thus an inertial cartesian
position can be derived directly from the measure-
ments. The catalogue state and the measured posi-
tion can be compared directly in a cartesian or cur-
vilinear RTN coordinate system. Another option is
to derive an initial orbit from the new tracklet and,
instead of using the position-velocity space, com-
pare the two orbits in their element-space, see e.g.
[7, 8]. However, if there is only a single or very few
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detections during the pass, there is no good chance
of obtaining a reliable orbit.

Apart from using the Mahalanobis distance, [7]
describes a fixed gating approach for radar measure-
ments based on the differences between the meas-
ured and predicted positions in RTN coordinates
without considering the covariances. Another ap-
proach is to calculate the divergence between two
probability distributions, here measurement and
state, to decide whether they belong to the same
object, see e.g. [9, 10].

2.2 Association Test

The following analysis focuses on radar meas-
urements and the association decision is taken via
the Mahalanobis distance in a common coordinate
frame, which can be derived directly from the detec-
tion without an orbit determination. The resulting
problem is to find an appropriate frame for this com-
parison. The difficulty of finding a good frame for
the comparison is due to the overlapping effects of
the measurement and orbit errors.

As an example, consider an object in an orbit
with a semi-major axis a = 6 878 km, an eccentri-
city e = 0.001, and an inclination i = 86◦ which is
detected at a range ρ = 544 km and an elevation
el = 67◦. The position uncertainty in the orbit’s
curvilinear RTN frame is [0.01, 15.0, 0.01] km and
the measurement uncertainties are [σρ = 0.01 km,
σρ̇ = 0.01 km/s, σaz,el = 1.0◦]. The assumed un-
certainties are mainly dominated by the along-track
error of the orbit and the angular error of the radar.
Figure 1a shows the resulting distribution of meas-
urements from a Monte Carlo experiment using the
mentioned uncertainties projected into the cartesian
TR-plane and it appears to be well-shaped as no dis-
tortions are visible in this plot. To explain how this
cloud of points is created, Figure 1b separates the
effects of the orbit and the sensor noise and shows a
cut through the TR-plane at N=0 km. For the or-
bit noise, it is visible that the large along-track error
makes the curvature of the orbit visible leading to a
non-normal distribution in this frame. The second
set of points shows the effect of the radar noise.
This distribution is tilted and curved, thus also not
normal in the given frame. The distribution of the
radar noise is highly dependent on the observation
geometry but this plot allows it to deduce that there
is no frame which can fit both distributions to be
normal.

For the following tests, a catalogue state is as-
sumed to be known including the orbit and its cov-
ariance. Based on this state as a reference, the true
and to the observer unknown position of the object

is obtained by corrupting the catalogue state with
different levels of orbit noise in the curvilinear RTN
frame according to its covariance. Thus, it is impli-
citly assumed that the covariance in the catalogue
is realistic. Measurements with the given sensor
noise are derived from the true state. The squared
Mahalanobis distance M2

d is calculated between the
measurement and the catalogue state in different
coordinate systems. If this is performed for a large
set of observations, the resulting distribution of M2

d

should follow a χ2(ν)-distribution with the degrees
of freedom ν equal to the number of compared vari-
ables per observations. The degrees of freedom
are ν = 4 for the direct use of the radar obser-
vations (ρ, ρ̇, az, el) and ν = 3 for the comparison
of RTN positions. Different statistical parameters
are derived from the M2

d -distribution and compared
to the theoretical values of the χ2(ν)-distribution.
Those parameters are the mean (µ = ν), the me-

dian m ≈ ν ·
(
1− 2

9ν

)3
and the variance (σ2 = 2ν)

[11]. Additionally, the threshold values of χ2(ν)
are checked for which there should be a cumulative
value of 5% and 95% of the samples to test both ends
of the distribution for a possible shift of the values.
The threshold at 99.9% of the χ2(ν)-distribution is
checked to detect the frequency of outliers. These
outliers are removed for the calculation of the re-
maining statistical properties to increase the robust-
ness of these parameters. Thus, this outlier rate
should be at 0.1% which represents the most strict
condition as can be seen in the following. The res-
ulting heatmaps depict the difference between the
value obtained from the sampled distribution and
the theoretically expected one.

This experiment uses a population of 1 000 differ-
ent objects in Low Earth Orbit (LEO) for a simula-
tion of observations from a single station over seven
days. This leads to approximately 25 000 passes in
total. To limit the computational time, 2 500 passes
are randomly selected for the following tests. Each
test uses the same set of passes. The noise values
are set to [0.01, σT, 0.01] km in the orbit’s curvilin-
ear RTN frame and [σρ = 0.02 km, σρ̇ = 0.01 km/s,
σaz,el] for the measurements. The dominating noise
values σT and σaz,el are varied systematically. Only
true positive correlations are tested to analyse the
resulting distribution.

The following tests can be separated further into
two sub-categories: single-point association and
multi-point association. Single-point association
refers to those methods which can be performed
with a single detection, here the association in meas-
urement space and curvilinear RTN, see Section
2.2.1 and Section 2.2.2. In contrast to that, the
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Figure 1: Distribution of measured positions by combining the noise of the radar and the orbit’s position
uncertainty. (b) is cut along RT-plane

multi-point association requires a sequence of detec-
tions, here the time bias removal, see Section 2.2.3
and Section 2.2.4. Those also add another dimen-
sion to the problem because the results may also be
dependent on the number and spacing of the obser-
vations.

2.2.1 Observations

The first experiment uses the observables dir-
ectly. The association is performed by comparing
the measured observables (ρ, ρ̇, az, el) to those ex-
pected from the catalogue state. Combining their
difference with the sum of the measurement covari-
ance and the orbit covariance transformed into the
measurement system, the Mahalanobis distances
can be calculated. The distribution of the result-
ing distances of the entire population is compared
to the expected values of the χ2(4)-distribution and
the differences between them are shown in Figure 2.
Figure 2a contains the percentage of outliers. This
number becomes significantly larger than 0.1% for
along-track errors of more than 5 km. For the re-
maining parameters, it might be argued that the as-
sociation is acceptable for up to 7.5 km along-track
(AT) uncertainty. All parameters show roughly con-
stant results for the same AT value, whereas the
differences continuously increase for increasing AT
uncertainties at a constant sensor noise. This be-
haviour confirms that this coordinate system is not
sufficient for large AT uncertainties due to the non-
linearity of the transformation into the measure-
ment system, which increases its effect with an in-
creasing size of the orbit covariance. It should also
be considered, that for a sensor with a very low
sensor noise (σaz,el = 0.001◦), the sensitivity to the
along-track noise is much higher with the degrada-

tion starting already at σT ≈ 1 km, because the or-
bit error is dominating compared to the very small
measurement error.

2.2.2 Curvilinear RTN

The observations (ρ, az, el) and their covariance
matrix are transformed into the orbit’s curvilinear
RTN system to perform the association in this sys-
tem. This system can, as one would expect, tolerate
also large along-track uncertainties. In contrast to
the cartesian RTN, it considers the curvature of the
orbit for a growing along track error [6]. As visible
in Figure 3, the outlier condition is met for all along-
track errors up to σaz,el ≈ 0.25◦. For the remaining
parameters, as opposed to the previous example in
the measurement space, the differences are now in-
creasing for an increasing sensor noise, but there is
no clear boundary at a certain sensor noise value.
The larger the AT uncertainty, the larger also the
acceptable sensor noise.

2.2.3 Observations – Time Bias Removal

As another approach to improve the association,
it is attempted to use the advantages of the sensor
coordinates of the measurements while mitigating
the effect of the along-track error. This is done by
first calculating the position differences between the
catalogue and measured (ρ, az, el)-position in the
curvilinear RTN for all detections in the tracklet.
Because it is assumed that the along-track error is
dominating and consistent between multiple detec-
tions, it is attempted to quantify the along-track er-
ror by averaging over the individual along-track er-
rors which are affected by both the orbit and sensor
noise. This mean along-track error ∆AT is then
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Figure 2: Difference to the theoretically expected values of the M2
d -distribution using the observables directly.
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Figure 3: Difference to the theoretically expected values of the M2
d -distribution using the curvilinear RTN

coordinates.
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transformed to a time bias ∆tAT by dividing ∆AT
by the total orbital velocity. The reference orbit
from the catalogue is propagated by ∆tAT to cor-
rect the catalogue state before deriving the refer-
ence measurement from it for the comparison to the
actual measurements. The uncertainty of the mean
time bias ∆tAT is used as the new along-track or-
bit uncertainty and replaces the initial uncertainty
of this component in the covariance matrix before
transforming it to the measurement coordinates.

The results using this approach are shown in Fig-
ure 4. Concerning the general trend, it is visible
that now the boundary towards a declining quality
of associations is towards larger measurement noise
and not towards larger along-track noise as in Fig-
ure 2 in the same coordinates. When comparing to
the curvilinear coordinates in Figure 3, the results
are in general worse now with the exception of the
cases with large angular sensor noise and low along-
track noise (top left corner). However, for this area
the direct usage of the observations is better than
the ones without the time bias and thus the removal
of the time bias apparently does not improve the as-
sociation.

2.2.4 Least Squares-based Time Bias Removal

Concerning the removal of the time bias, it is also
attempted to use the high-precision range informa-
tion as a useful information. For this, a least-squares
problem is set up to minimise the range residuals by
varying the time bias ∆tAT when propagating the
reference orbit. The new along-track uncertainty is
again derived via the fit, but it is very small now,
thus the measurement errors dominate. The associ-
ation is done in the measurements’ frame as before.
The results for tracklets with a length of 42 s and de-
tections every three seconds (15 data points in total)
are shown in Figure 5 and they are much better
than the previous results even for large along-track
errors. Because this fit is strongly dependent on the
length of the tracklet and its density, the quality
of the results might differ for different measurement
scenarios. For the final association decision, also
the size of the time bias compared to the expected
along-track error would need to be considered in or-
der to ensure that the correction value is not larger
than expected, which is not done in this simplified
test.

2.2.5 Summary

The conclusion from this analysis is that there is
no single coordinate system which gives the best res-
ults, but depending on the conditions either the ob-

servable coordinates or the curvilinear RTN is bet-
ter. Thus, it should rather be considered if there
is either a relatively low noise sensor or a relatively
high-confidence orbit. In general, the smaller covari-
ance is the one which should be transformed to an-
other system, because it has the better chance of re-
maining sufficiently normal. Another option would
be to try to reduce the effect of a non-normal distri-
bution by using Gaussian Mixture Models (GMMs)
to approximate the non-normal distribution. For
GMMs, a probability distribution is modelled by a
sum of weighted normal distributions, which can be
used to model any other distribution assuming a suf-
ficient number of components is used. However, de-
fining an equivalent of the Mahalanobis distance for
GMMs which allows statistical gating does not seem
to be available. Alternative distance measures such
as the Kullback–Leibler divergence do not have the
same statistical gating behaviour as the Mahalan-
obis distance and thus would need some additional
calibration.
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Figure 4: Difference to the theoretically expected values of the M2
d -distribution using the observables with

the removed time bias.
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Figure 5: Difference to the theoretically expected values of the M2
d -distribution using the observables with

the removed time bias via the least squares of the range residuals (tracklet length 42s, detection intervals
3s).
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3 Object Confirmation and Maintenance

3.1 Overview

Within the catalogue build-up process, a decision
has to be made whether and when a new object is
introduced into the catalogue. This includes switch-
ing from tracklet-tracklet association to the previ-
ously discussed orbit-tracklet association for future
observations of this object. This decision can be
based on different parameters, which is discussed in
the following.

The first approach for this is to use known track
confirmation algorithms from multi-target tracking.
A relatively simple one is to define N expected
passes based on the current trajectory and then ac-
cept an object if m detections are made, thus m-
out-N method [12]. Another option is the use of
the sequential likelihood ratio test [13], which has
already been applied to orbit cataloguing [14].

The second approach is the use of information
theoretic measures. Such work is often based on
[15]. Most applications in space surveillance have
been performed with regard to sensor tasking, first
by [16] and later extended by [17, 18]. Although
sensor tasking might be considered to be related to
cataloguing, this aspect rather covers the catalogue
maintenance than the build-up.

In the following, information theoretic measures
are used to make decisions on the confirmation of
objects and their current quality. To distinguish
further from the scheduling aspect, the work here
focuses on survey sensors without dedicated track-
ing, e.g. a radar which is constantly scanning a
pre-defined field of regard. This is also related to
the previously introduced tracklet-orbit correlation,
because it might include a first step of associating
new tracklets with preliminary orbits before a de-
cision concerning the status can be taken.

3.2 Object Confirmation - Theory

When a new object is created through the
tracklet-tracklet correlation, an objective value
based on the current information should be used
to establish whether the orbital information for this
object is good enough to include the object in the
catalogue for regular maintenance. This means that
its orbit needs to be sufficiently precise to perform
the tracklet-orbit association reliably for a defined
time span.

In practice, the quality of the orbit is dependent
on several factors such as the number of passes, their
geometry and their lengths. Due to the large vari-
ability and inter-dependence of these different para-

meters, it is preferred to have a characteristic value
to quantify the available information and make it
comparable between different cases with different
conditions.

The most promising quantity from information
theory is the differential entropy H of the probabil-
ity density function p(~x) (in unit bits) [19]:

H(p(~x)) = −
∫ ∞
−∞

p(~x) log2 (p(~x)) d~x . (2)

The smaller the entropy, the more information is
available. For an n-dimensional multivariate normal
distribution N (~x|~µ,Σ) with mean ~µ and covariance
Σ, this can be solved analytically to:

H(N (~x|~µ,Σ)) =
1

2
log2 ((2πe)n det (Σ)) . (3)

3.3 Object Confirmation - Experiments

As an initial experiment, it is attempted to relate
the entropy of the state at the epoch of the least
squares orbit determination (LSQ-OD) to the along-
track uncertainty of the propagated covariance mat-
rix after up to three days. The entropy of the state
is calculated in Keplerian elements using the mean
anomaly and also the propagation of the covariance
is performed in that system because the error distri-
bution keeps its Gaussian nature for a longer period
of time in an orbital-elements-based system [7]. At
each point of interest, this covariance can then be
transformed to the curvilinear coordinates to get an
along-track uncertainty.

To search for a relation between the differential
entropy and the propagated size of the covariance,
different conditions have been used for the tracklet
length, the number of passes and the noise level of
the observations based on the same group of LEO
objects as in the previous chapter. Figure 6 shows
the size of the covariance in along-track direction
after 48 hours of propagation over the entropy at the
orbit determination epoch. There are two different
types of passes: those with a fixed number of ob-
servations (40s-5f: 40 s length with an observation
every 5 s; 42s-3f: 42 s length with an observation
every 3 s) and those with a random number of de-
tections per pass (RanLen: 3-7 seconds between ob-
servations with 3-13 observations in total). For the
random length, there is also an experiment with an
increased angular noise of the sensor, σaz,el = 0.4◦

instead of σaz,el = 0.25◦. Additionally, there are
LSQ-ODs from two and three passes. It is visible
that the data clearly follows an overall trend where
also the different measurement conditions overlap.
This also shows that depending on the observation
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geometry, an orbit which is calculated from three
passes is not necessarily better than one using only
two passes with a better observation geometry or
temporal distribution. The use of the differential
entropy seems to give a general measure of the avail-
able information and thus becomes independent of
the specific parameters of an orbit determination.

As a second visualisation, Figure 7 shows the per-
centage of along-track uncertainties which are below
15 km as an example for the scenarios after 48 hours
and 72 hours. Also here, it is visible that the differ-
ent cases form a consistent trend, although there are
some outliers. These plots show that it should be
possible to give a statistical boundary of the propag-
ated covariance based on the entropy of the covari-
ance after the orbit determination.

The exact performance criterion for a database
accepting σT as an along-track uncertainty after t
days would depend on its application. If the goal is
to maintain these objects’ orbits by a given sensor
network, these numbers would depend on the sensor
characteristics, whereas a database for conjunction
assessment would probably require other specific-
ations. Thus, there is no intention of defining a
threshold here, but only to show the usability of the
entropy as a concept.

To test the combination of the object confirma-
tion and orbit-tracklet association, an experiment
was performed which included both the initial cre-
ation of the object and the association of subsequent
observations. For each object, an LSQ-OD is per-
formed with the first two passes and it is checked
whether the differential entropy H < −50 bits,
which is derived from the previous experiments. If
H > −50 bits, the next pass is added to the LSQ-
OD until the condition is met. It is assumed that
the tracklet-tracklet correlation correctly identifies
these candidates. After the orbit uncertainty is be-
low the threshold, the resulting orbit is propagated
to all later observations and the orbit-tracklet as-
sociation is attempted in different coordinate sys-
tems. The total time span of simulated observations
is seven days. The subsequent measurements are
only used to test the association and they are not
integrated into the orbit as an update. Only orbits
and tracklets from the same objects are tested for
an association, thus there is no possibility of a false
positive result, meaning an association of a tracklet
to an object which did not generate this tracklet.

The association is performed either in curvilinear
RTN positions or measurement space. Four differ-
ent approaches for the association are used in each
coordinate system. The most simple one uses only
one observation, independent of the total tracklet

length, which serves mainly as a reference case. The
other three are designed to use the entire informa-
tion from the tracklet. The “Sum”-case uses the
squared sum of the Mahalanobis distances over all
m observations in the tracklet:

M2
d,total =

m∑
i=1

M2
d,i . (4)

Theoretically in case of independent errors, this
would lead to a χ2(m · ν)-distribution with the de-
grees of freedom equivalent to m times the degrees
of freedom of the single observation (3 for curvilin-
ear RTN and 4 for observations). Another approach
is the “Time Bias Removal” (TBR) as explained in
the previous section by minimising the range resid-
uals via a least squares optimisation. As a third
approach, the association is performed for each de-
tection within the tracklet and the entire pass is
accepted if more than a given percentage of obser-
vations in the tracklet have been positively correl-
ated. This approach is called “Ratio” in the follow-
ing. The association threshold for all tests is set at
the cumulative value of 95% of the corresponding
χ-distribution depending on the degrees of freedom.

Table 1: Success Rate of Orbit-Tracklet Association.

System Random
Length

40s-5f 42s-3f

Obs.

Single 92.2 86.2 87.1
Sum 94.4 89.8 93.9
TBR 85.2 76.1 76.0
Ratio 96.7 92.9 94.4

Curvi- Single 92.9 87.5 89.0
linear Sum 97.1 93.3 96.8

RTN
TBR 86.3 83.1 81.6
Ratio 98.5 96.7 97.8

Tracklets with a fixed length (40s-5f and 42s-3f)
and with random lengths as explained in the previ-
ous section are used for the simulation. The results
are shown in Table 1. If the probability distribu-
tions were matched perfectly, it would be expected
to have exactly 95% of positive associations for the
cases Single, Sum and TBR. The case Ratio should
have 100%. It can be seen in the table that the
actual association rates are slightly lower which is
probably due to wrong estimates of the covariance
after OD and propagation. Especially, the time bias
removal is not even reaching 90% for any of the ex-
periments.

Some additional plots are used to analyse the
reasons. Figure 8 shows the percentage of true pos-
itive (TP) and false negative (FN) associations over
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Figure 8: Percentage of TP and FN over the time between LSQ-OD and association.

the time between the LSQ-OD epoch, i.e. the or-
bit’s reference epoch, and the epoch of the observa-
tion for the association of the single observations in
both coordinate systems. True positives are success-
ful associations, while false negative means that the
association was falsely rejected. It can be seen that
there is no trend of an increased FN percentage with
more time between the orbit’s reference epoch and
the measurement. Figure 9 shows the same data
set over the difference between the along-track er-
ror ∆AT calculated from the known true reference
position of the object and the along-track compon-
ent σT of the covariance matrix. From these plots,
it can be seen that a FN association is more likely
if ∆AT is larger than σT, which also makes sense
intuitively.

Additionally, the distribution of the Mahalanobis
distances of the associations can be plotted to com-
pare it to the theoretically expected χ-distribution
with the corresponding degrees of freedom. Figure
10 depicts this comparison for the association of the
single observations. In both cases, it can be seen
that the theoretical distribution is roughly matched.
Thus it can be suspected that the majority of the
failed associations is due to outliers and not due to
a general shift of the statistical distribution.

Using the “Sum”-approach, it had been men-
tioned that the degrees of freedom are equivalent to
the product between the degrees of freedom of the
single observation and the number of observations
in the tracklet under the assumption of uncorrelated
errors. However in the orbit-tracklet-association
both the errors within one detection and the errors
of the different observations within one pass are not
statistically independent. Thus it can be seen from
Figure 11, that the distribution is shifted to lower
values as it effectively has less degrees of freedom,

which also explains why the Sum-approach had the
largest percentage of TP-associations.

3.4 Object Quality - Theory

To extend the work on the orbit-tracklet associ-
ation, the measurements should also be used to give
an impression on the current quality of the catalogue
object. This parameter should reflect both the cur-
rent uncertainty of the orbit and the newly received
measurements as a feedback by comparing them to
the expected ones based on the current orbit.

From the framework of the information theory, a
property of an uncertain event from a probability
distribution is the surprisal (or information con-
tent). This is used to emphasise that events with a
lower probability contain more information if they
occur, because they might lead to changes in the
current models or assumptions. The surprisal of an
event xk with a probability P(xk) is defined as (in
bits):

I(x) = − log2 (P(xk)) . (5)

The entropy H, which was used in the previous sec-
tions, is the expectation value of the surprisal:

E [I(x)] = H(p(x)) . (6)

From these definitions it can be seen that an event
with P(xk) = 0 has infinite surprisal, whereas an
event with P(xk) = 1 has no surprisal and thus also
contains no information. Classically, this concept is
used for discrete probability distributions.

To transfer this to the continuous probability
density functions used in the present problem, a
definition of pz has to be found as the pseudo-
probability of the new measurement zm, which fulfils
the conditions above, while considering the uncer-
tainty of both, the measurement and the state. This
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Figure 9: Percentage of TP and FN over the difference between the along-track component of the covariance
and the present along-track error.
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Figure 10: Mahalanobis distance compared to reference χ-distribution for single observations (Random Len).
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Figure 11: Mahalanobis distance compared to reference χ-distribution for the “Sum”-approach of single
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leads to the following equation:

pz =

∫ ∞
−∞

√
N (~z|~ze,Σx,M + ΣM ) · N (~z|~zm,ΣM ) d~z ,

(7)
where N (~z|~ze,Σx,M + ΣM ) is the assumed normal
distribution of the expected measurement ~ze based
on the current state. The uncertainty of this distri-
bution is taken from the sum of the measurement
uncertainty ΣM and Σx,M , which is the state’s un-
certainty Σx projected into the measurement space.
The distribution N (~z|~zm,ΣM ) is the one around the
newly received measurement ~zm with the measure-
ment uncertainty ΣM . This definition fulfils the
criterion to be equal to 1 only if the two distribu-
tions are exactly the same, meaning that there is
no uncertainty on the state and the expected meas-
urement is matched exactly. If there is no overlap
between the distributions, this value is 0. Although,
Equation 7 uses the normal distribution as an ex-
ample, any probability distribution can be used.
The value pz is mathematically not a probability
because its integral over all possible realisations of
the measurement ~zm is larger than one. However,
it is also possible to use this integration over all ~zm
to find a normalisation constant which can be used
to give pz the properties of a probability distribu-
tion. Due to the log-operation of the surprisal, this
normalisation would only lead to a constant offset,
which will not be considered in the following. Thus,
the surprisal is calculated as:

I(z) = − log2 (pz) . (8)

This leads to measurements with a low surprisal if
there is a small state uncertainty and the measure-
ments are close to the expected ones. The integral
for pz can either be multidimensional and consider
all observables or use only the most precise meas-
urement as this provides the most information. In
case of the radar, this is the range.

The idea behind this selection is that it considers
both the difference between the expected and re-
ceived measurement (∆z) and indirectly also the
size of the state uncertainty. The larger the state
uncertainty, the larger also the minimum achievable
surprisal, which makes sense considering that an ob-
ject with a large uncertainty should not be a high-
quality object with a low surprisal. At the same
time, the surprisal also becomes sensor-dependent if
there are different noise levels between sensors. For
most cases, a more precise sensor can produce meas-
urements with a higher level of surprisal because it
can sample the uncertainty area at a finer resolution.
In principle it could be possible to compare differ-

ent sensors’ minimum surprisal values based on the
same orbit and observation geometry.

The behaviour of the surprisal is visualised in Fig-
ure 12 for an example with an along-track error of
a few kilometres which dominates the range uncer-
tainty compared to the sensor’s measurement uncer-
tainty. The sensor’s noise and the difference com-
pared to the expected measurement ∆z (called error
in the plot) is varied systematically. It is visible that
for a given measurement error ∆z the surprisal re-
duces with an increased sensor noise, because the
reliability and thus the information content of the
measurement reduces. If the sensor noise is fixed,
the surprisal is the least for ∆z = 0, because this
confirms the current estimate of the orbit and thus
has the smallest possible information gain. As can
be seen in the plot, the difference ∆z is much larger
than the sensor noise, thus the variance due to the
sensor noise is only leading to minor variations of
the surprisal.

One possibility to remove the sensor-dependency
would be to normalise the surprisal by the min-
imum surprisal of the sensor, which is calculated
as ISensor,0 = I(zm = ze).

To further analyse the variability of the surprisal,
a Monte Carlo experiment was conducted for a
single state with a covariance matrix in RTN co-
ordinates. The measurements were generated after
the actual state error was randomly sampled from
the state covariance. For each range measurement,
the surprisal is calculated. The results are given by
the plot “Ref” in Figure 13, which shows the vari-
ation of the surprisal due to different realisations of
the along-track error. As a comparison, the same
calculation has been performed under the assump-
tion that the current estimate of the covariance is
only half of the sampled one, thus overly optimistic.
This leads to two opposing effects. In cases where
the actual along-track error is small enough to be
consistent even with the smaller covariance, it leads
to smaller values of the surprisal because the un-
certainty is less. At the same time, the tail of the
surprisal values in the histogram becomes more pro-
nounced because the measurements with larger off-
sets are unexpected and thus contain more informa-
tion. This second case, when the error is larger than
what would be consistent with the covariance mat-
rix, is the one which should be detected and as it
can be seen the surprisal is a possible tool for that.

3.5 Object Quality - Experiment

To test the proposed parameter, the same experi-
ment setup as in the previous chapter has been used.
The orbit determination is performed on subsequent
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tracklets until H < −50 bits and the resulting orbit
is then propagated to all following measurements.
Here, also the surprisal is calculated as described
for each new measurement.

The results are shown in Figure 14 with the along-
track error calculated from the (in the real case un-
known) true position on the x-axis and the size of
the along-track covariance as a colour code. The
surprisal is again calculated by using only the range
measurement. It can be seen that very low values of
the surprisal are reached for small along-track errors
and covariances as expected. The zoomed version in
Figure 15 also shows that objects with a low along-
track error but a large covariance lead to a larger
surprisal, because they contain more information.

Another example using real optical measurements
is shown in Figure 16. In this case of a GEO satel-
lite, an orbit has been determined from one night
of measurements using the LSQ-OD. For the next
three nights, this orbit is propagated to the new
measurement epochs and the Mahalanobis distance
for the association can be calculated together with
the surprisal. The association and the surprisal both
use the two-dimensional observation vector of right
ascension and declination. After each night, the
orbit is updated using the newly associated meas-
urements. The Mahalanobis distance in the plot

is relatively stable between one and two, because
the differences between the expected and received
measurement are scaled by the covariance. If both
are decreasing, the Mahalanobis distance remains
at similar values. In contrast to that, the surprisal
considers the size of the covariance, which is shrink-
ing after each night due to the incorporation of new
measurements. For the second and third night there
are clear decreases in the surprisal compared to the
previous night, which indicates that the confidence
in the object and its position has in fact increased.

4 Conclusion

In this work, an analysis of three aspects of
the automated maintenance of a space object orbit
database has been presented. The first part con-
sidered the association of new measurements with
existing catalogue objects. It was shown how the
effects from the orbit and sensor noise restrict the
choice of an appropriate coordinate frame for the
comparison. It was also tested how an entire track-
let might be treated compared to a single point. In
the second part, the use of measures from informa-
tion theory to build and maintain the database have
been introduced. The parameters entropy and sur-
prisal can generalise the information content for spe-
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cific objects and measurements. This can be used to
either assess whether an initial orbit is good enough
to be integrated into the database or to check the
quality of an object’s orbit.

Future work can include further tests with regard
to the confirmation of new objects, which may con-
sider more than just the covariance. The feedback
from associated measurements to estimate the cur-
rent quality can be extended to have a direct impact
on the tracking time during the current pass or the
future scheduling.
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