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Abstract 

Orbit determination of space debris objects in the context 
of space surveillance is often performed by associating 
several sequences of observations related to the same 
object. If preliminary orbits can be computed from the 
single sequences, there is a need for an association 
criterion to evaluate whether they belong to a unique 
object. The definition of a distance between orbits allows 
for a threshold criterion for which two orbits are 
considered associated. Several definitions of distance 
exist that satisfy the metric space axioms. These depend 
on the choice of the parameters to describe the orbit. For 
Keplerian orbits one possible definition formulates the 
distance as a function of the traditional Keplerian orbital 
elements. The appropriate metric changes according to 
the degrees of freedom considered in the problem.    
In this paper we propose a new metric that includes the 
orbit anomaly in addition to the other orbital parameters 
which characterize the orbital plane and shape. Contrary 
to models adopted in the asteroid research, in the case of 
space debris and satellite orbits, where the revolution 
periods are much smaller, considering the position of the 
object along the orbit can significantly improve the orbit 
characterization and therefore the orbit association. 
Additionally, in our approach the proposed metric is 
scaled according to the obtained orbit covariances. 
Applications of the distance definition to several 
association examples are shown.  

1 Introduction 

The regular observation of space debris is important to 
characterize the near Earth space environment and collect 
data useful for space surveillance purposes. The 
observations are usually processed to orbits which are 
assigned to space objects in a catalogue. Often it is 
necessary to associate groups of observations belonging 
to the same object to calculate its orbit. Refer e.g. to [RD-
1][RD-2] for details about some association methods. In 
case preliminary orbits can be computed from these 
single groups (also called tracklets), an association 
criterion based on these orbits is necessary to evaluate 
whether the observations are related to the same object 
[RD-6]. The definition of a distance between orbits 
allows for a threshold criterion to make the association. 
The association is then successful if the distance is 
smaller than a given threshold. Often the definition of 
Mahalanobis distance is used as a measure of the 

goodness of the association. The orbits are transformed 
to state vectors and the Mahalanobis distance is evaluated 
in Cartesian coordinates. The orbit uncertainty is 
described according to a Gaussian distribution and 
mostly the Gaussian model is good enough to describe it, 
but depending on the coordinate system the inadequacy 
can be accentuated (see e.g. [RD-5]). An appropriate 
coordinate system can be found where the Gaussian 
assumption well approximates the actual distribution. In 
curvilinear coordinates [RD-4][RD-6] the orbital 
uncertainty distribution can be better described, since the 
coordinates take into account the real curved trajectory 
of the object.  
Other definitions of distance are formulated in the space 
of the orbits, namely considering the orbital elements as 
the components of the vector space. Several studies have 
investigated the structure of the space of Keplerian orbits. 
Moser [RD-8] first studied the space of constant energy 
surfaces for bounded Keplerian orbits. He showed that 
this space is topologically equivalent to the Cartesian 
product of two spheres. An explicit formula for the 
geodesic distance between points in this space was 
derived in [RD-3]. In [RD-9] different metrics in the 
orbits space are proposed. 
In this work an extended definition of distance is 
proposed which adds the anomaly in the definition in 
[RD-3], the latter being based only on five Keplerian 
orbital elements. In general, the existing definitions of 
orbit distance come from the asteroid research, 
characterized by the long orbital period of the observed 
asteroids. There, especially the shape and the orientation 
of the orbital plane are relevant for a comparison, less the 
position of the object along the orbit (given by the 
anomaly) which is difficult to be predicted. However, in 
the case of space debris and satellite orbits, different 
possible observation conditions (e.g. re-observation after 
a fraction of the orbital period) allow for a better 
prediction of the position and the addition of the anomaly 
in the distance formulation can improve the orbit 
association. 
In addition to considering the anomaly, as an alternative 
to the definition in [RD-3] also one of the metrics 
proposed in [RD-9] is analysed. Both formulations for 
the distance need to be modified in order to be expressed 
as a Mahalanobis distance. 

2 Distance between Keplerian orbits 

In [RD-3] the space of bounded Keplerian orbits of fixed 
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energy is described using the topology 𝕍𝕍(𝐸𝐸)~𝑆𝑆2 × 𝑆𝑆2, 
the Cartesian product of two spheres. This topology is 
extended through the semimajor axis to the cone 𝕂𝕂(𝑆𝑆2 ×
𝑆𝑆2). The formula to compute the geodesic distance 
between points in this space is:  

𝑑𝑑 =  �2(𝑎𝑎12 + 𝑎𝑎22 − 2𝑎𝑎1𝑎𝑎2 cos𝜓𝜓),                   (1) 

where    𝜓𝜓 = �𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2(𝜂𝜂��⃗ 1∙𝜂𝜂��⃗ 2)+𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2�𝜉𝜉�⃗ 1∙𝜉𝜉�⃗ 2�

2
         (2) 

and         �⃗�𝜂 = 𝑒𝑒 + ℎ�⃗ ,         𝜉𝜉 = 𝑒𝑒 − ℎ�⃗ .                             (3) 

Here is 𝑒𝑒 the eccentricity vector and ℎ�⃗  a normalized 
angular momentum vector ℎ�⃗ = 𝐻𝐻��⃗

√𝜇𝜇𝑎𝑎
 given the semimajor 

axis 𝑎𝑎 and the gravitational parameter 𝜇𝜇. The related 
Riemannian metric is induced by the Euclidean metric on 
ℝ6. In the article it is mentioned that the geodesic distance 
on 𝕂𝕂(𝑆𝑆1 × 𝑆𝑆1) can be generalized to a manifold with n 
spheres 𝕂𝕂(𝑆𝑆1 × ⋯× 𝑆𝑆1) ⊂ ℝ2𝑛𝑛. The definition in (2) is 
then replaced by a general expression which contains not 
only specifically the angle differences on the sphere for �⃗�𝜂 
and 𝜉𝜉, but additional angles for any additional sphere: 

            𝜓𝜓 = �∑ 𝜃𝜃𝑖𝑖
2𝑛𝑛

𝑖𝑖=1
𝑛𝑛

.                               (4) 

3 Distance with mean anomaly 

We want to extend the distance between two orbits (1) to 
all 6 orbital parameters including the orbit anomaly. We 
can describe the problem with a topology ℍ = 𝕂𝕂(𝑆𝑆2 ×
𝑆𝑆2 × 𝑆𝑆1) ⊂ ℝ6 to be able to make use of eq. (4). The 
sphere 𝑆𝑆1 is per definition a subspace of ℍ and should be 
homeomorphic to the set of object positions along the 
orbit. This can be parameterized with an angle 𝜑𝜑 that 
describes the portion of the orbit covered by the object 
from a given start point. Possible known 
parameterizations in 𝜑𝜑 are true, mean, and eccentric 
anomaly. However, the description of true and eccentric 
anomaly depends on the eccentricity 𝑒𝑒 of the orbit. If we 
consider the sets 𝐷𝐷1 = {𝜑𝜑: 𝜑𝜑 ∈ [0,2𝜋𝜋)} and 𝐷𝐷2 = {𝑒𝑒: 𝑒𝑒 ∈
[0,1]} we see that there is no bijection 𝐷𝐷1 × 𝐷𝐷2 → 𝑆𝑆1. 
Furthermore, 𝐷𝐷2 is already related to 𝑆𝑆2 ⊂ ℍ through a 
homeomorphism as previously explained in the 
construction 𝕍𝕍(𝐸𝐸)~𝑆𝑆2 × 𝑆𝑆2.  
Thus let us examine the case of the mean anomaly. First 
we consider the mapping to 𝑆𝑆1 as 𝑓𝑓: [0,2𝜋𝜋) → 𝑆𝑆1 with 

𝑓𝑓(𝜑𝜑) = (cos𝜑𝜑 , sin𝜑𝜑)                (5) 

where 𝜑𝜑 ∈ [0,2𝜋𝜋) and (𝑥𝑥,𝑦𝑦) ∈ 𝑆𝑆1 ⊂ ℝ2.  
The mean anomaly at an arbitrary time 𝑡𝑡 is defined as 

                             𝑀𝑀(𝑡𝑡) = 𝑛𝑛(𝑡𝑡 − 𝜏𝜏)                             (6) 

where 𝜏𝜏 is the time of pericenter passage and 𝑛𝑛 = 2𝜋𝜋
𝑇𝑇

 is 
the mean angular motion.  

There is a mapping to the set of mean anomalies 𝐷𝐷 =
{𝑀𝑀(𝑡𝑡), 𝑡𝑡 ∈ ℝ}  defined as 𝑔𝑔: [0,2𝜋𝜋) → 𝐷𝐷 with 

                            𝑔𝑔(𝜑𝜑) = 𝑛𝑛(𝜑𝜑
𝑛𝑛
− 𝜏𝜏)                              (7) 

where 𝜑𝜑 ∈ [0,2𝜋𝜋). 
To account for the compactness in 𝑆𝑆1, we have to extend 
the half-open interval [0,2𝜋𝜋) in 𝑓𝑓 and 𝑔𝑔 to the compact 
factor group ℝ ∕ (2𝜋𝜋ℤ) and restrict the mean anomaly to 
𝐷𝐷 ∕ (2𝜋𝜋ℤ). Then the function 

                         ℎ = 𝑔𝑔−1 ∘ 𝑓𝑓:𝐷𝐷 ∕ (2𝜋𝜋ℤ) → 𝑆𝑆1              (8) 

is a homeomorphism. This justifies the topology ℍ for 
the extension of the distance definition using also the 
mean anomaly. Consequently in eq. (4) an additional 
angle difference 𝜃𝜃𝑖𝑖, the difference in mean anomaly, is 
introduced.  

4 Mahalanobis distance 

Eq. (1) in ℝ2 is simply proportional to the distance 𝑑𝑑 in 
the triangle shown in Figure 1 calculated with the law of 
cosines. If  𝜓𝜓 is small 𝑑𝑑 can be approximated by: 

                      𝑑𝑑 ≈  �(𝑎𝑎2 − 𝑎𝑎1)2 + (𝑎𝑎1𝜓𝜓)2                   (9) 

For the generalization in ℝ6 the eq. (4) for the angle 𝜓𝜓 
has to be used instead.  

 
Figure 1: Triangle showing the relation between 𝑎𝑎1, 

𝑎𝑎2, 𝜓𝜓, and 𝑑𝑑 in ℝ2.  

The sum of squares appearing in (4) and (9) suggests the 
possibility to scale the summands according to their 
uncertainty as in the Mahalanobis distance. We define the 
vector: 

                               𝑧𝑧 =

⎝

⎜
⎛
√3
𝑎𝑎1

(𝑎𝑎2 − 𝑎𝑎1)
𝜃𝜃1
𝜃𝜃2

𝑀𝑀2 −𝑀𝑀1 ⎠

⎟
⎞

,                        (10) 

where 𝜃𝜃1 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(�⃗�𝜂1 ∙ �⃗�𝜂2) and 𝜃𝜃2 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�𝜉𝜉1 ∙ 𝜉𝜉2�. 

To find the covariance matrix 𝐶𝐶𝑧𝑧 = 𝐶𝐶𝑎𝑎𝐶𝐶(𝑧𝑧) we calculate 
the matrix of the partial derivatives with the components 

                                      𝑇𝑇𝑖𝑖𝑖𝑖 =  𝜕𝜕𝑧𝑧𝑖𝑖
𝜕𝜕�⃗�𝑝𝑗𝑗

 ,                            (11) 

where �⃗�𝑝 = (𝑎𝑎1, … ,𝑀𝑀1,𝑎𝑎2, … ,𝑀𝑀2) contains the orbital 
elements of the two orbits. Setting 𝐶𝐶�⃗�𝑝 = 𝐶𝐶𝑎𝑎𝐶𝐶(�⃗�𝑝) we 
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have: 

                                      𝐶𝐶𝑧𝑧 = 𝑇𝑇𝐶𝐶�⃗�𝑝𝑇𝑇𝑇𝑇.                          (12) 

The Mahalanobis distance 𝑑𝑑𝑀𝑀 is obtained from: 

                                   𝑑𝑑𝑀𝑀 = �𝑧𝑧𝑇𝑇𝐶𝐶𝑧𝑧
−1𝑧𝑧                        (13) 

5 Equivalent metric 

In [RD-9] an alternative metric is proposed which is also 
based on the angular momentum 𝐾𝐾��⃗  and eccentricity 𝑒𝑒. 
The vectors 𝑢𝑢�⃗  and �⃗�𝐶 parallel to 𝐾𝐾��⃗  and 𝑒𝑒 with the following 
norm are considered: 

                           |𝑢𝑢�⃗ | = �𝑝𝑝,    |�⃗�𝐶| = 𝑒𝑒�𝑝𝑝,                    (14) 

where 𝑝𝑝 is the semilatus rectum. 
The metric is defined in the space ℍ of all non-rectilinear 
Keplerian orbits described by five Keplerian elements 
without the anomaly. The distance in the space ℍ is then 
expressed by the Euclidean distance in the ambient space 
ℝ6: 

                  𝑑𝑑 = �(𝑢𝑢��⃗ 1−𝑢𝑢��⃗ 2)2+(𝑣𝑣�⃗ 1−𝑣𝑣�⃗ 2)2

𝐿𝐿
               (15) 

where 𝐿𝐿 is an arbitrary factor which can be set to 𝐿𝐿 = 1. 
The distance as a function of the orbital elements looks 
like 

𝑑𝑑2 = (1 + 𝑒𝑒12)𝑝𝑝1 + (1 + 𝑒𝑒22)𝑝𝑝2 −
                                   2�𝑝𝑝1𝑝𝑝2(cos 𝐼𝐼 + 𝑒𝑒1𝑒𝑒2 cos𝑃𝑃)         (16) 

where  

                          cos 𝐼𝐼 = 𝑎𝑎1𝑎𝑎2 + 𝑎𝑎1𝑎𝑎2 cosΔ                 (17) 

and 

cos𝑃𝑃 = 𝑎𝑎1𝑎𝑎2 sin𝜔𝜔1 sin𝜔𝜔2 + (cos𝜔𝜔1 cos𝜔𝜔2 +
                𝑎𝑎2 sin𝜔𝜔1 sin𝜔𝜔1) cosΔ +
              (c2 cos𝜔𝜔1 sin𝜔𝜔2 − c1 sin𝜔𝜔1 cos𝜔𝜔2) sinΔ   (18) 

with   

                 𝑎𝑎 = cos 𝑖𝑖, 𝑎𝑎 = sin 𝑖𝑖, Δ = Ω1 − Ω2.            (19) 

This metric is topological equivalent to the one in eq. (1). 
According to the authors the Riemannian metric in ℍ 
proposed in [RD-3] possibly describes the diversity of 
orbits better than the Euclidean one used in eq. (15) but it 
is more complicated. Even if the two metrics are 
topological equivalent the obtained distances have 
different scaling factors. 
Let us consider the case of two equal orbits except for the 
semimajor axis. Then the distance calculated with eq. (1) 
is 

    𝑑𝑑 =  �2(𝑎𝑎12 + 𝑎𝑎22 − 2𝑎𝑎1𝑎𝑎2 = √2 |𝑎𝑎1−𝑎𝑎2|,            (20) 

whereas eq. (16) gives 

𝑑𝑑 = �(1 + 𝑒𝑒2)�𝑝𝑝1 + 𝑝𝑝2 − 2�𝑝𝑝1𝑝𝑝2� = 

                  = √1 + 𝑒𝑒2 ��𝑝𝑝1 − �𝑝𝑝2�                           (21) 

The proportional terms √2 and √1 + 𝑒𝑒2 occur also with 
orbits varying in the other orbital elements and as such 
can be considered overall scaling factors, which are 
eliminated through the Mahalanobis distance 
normalization. The �𝑝𝑝 terms seem to replace the 
semimajor axis 𝑎𝑎 in eq. (20). One possible way to extend 
eq. (15) to all six Keplerian elements, including the 
anomaly, is the following: 

𝑑𝑑 = �(𝑢𝑢�⃗ 1 − 𝑢𝑢�⃗ 2)2 + (�⃗�𝐶1 − �⃗�𝐶2)2 + (𝑤𝑤��⃗ 1 − 𝑤𝑤��⃗ 2)2,          (22) 

where 𝑤𝑤��⃗ 1 and 𝑤𝑤��⃗ 2 are vectors such that 

∢(𝑤𝑤��⃗ 1,𝑤𝑤��⃗ 2) = |𝑀𝑀1 −𝑀𝑀2|, |𝑤𝑤��⃗ 1| = �𝑝𝑝1, |𝑤𝑤��⃗ 2| = �𝑝𝑝2.  (23) 

Eq. (22) already has a structure suitable for scaling 
according to the Mahalanobis distance. Here we define 
vectors of the type 

                                     𝑧𝑧 = �
𝑢𝑢�⃗
�⃗�𝐶
𝑤𝑤��⃗
�                               (24)  

and we calculate the distance 

                   𝑑𝑑𝑀𝑀 = �(𝑧𝑧1 − 𝑧𝑧2)𝑇𝑇𝐶𝐶𝑧𝑧1−𝑧𝑧2
−1 (𝑧𝑧1 − 𝑧𝑧2)           (25) 

where 𝐶𝐶𝑧𝑧1−𝑧𝑧2 = 𝐶𝐶𝑎𝑎𝐶𝐶(𝑧𝑧1) + 𝐶𝐶𝑎𝑎𝐶𝐶(𝑧𝑧2) is determined 
similarly as in the eqs. (11) and (12). 

6 Simulations 

Preliminary simulations were conducted to evaluate the 
metric in ℍ = 𝕂𝕂(𝑆𝑆2 × 𝑆𝑆2 × 𝑆𝑆1) and the Mahalanobis 
distance described in eq. (13). Radar measurements of 
LEO objects on almost circular orbits (eccentricity < 
0.01) at altitudes around 1000 km and 800 km were 
simulated. The objects from the Space-Track TLE 
catalogue are observed during one night from a station at 
40º latitude. Table 1 shows the values used for the 
simulation.  

 Radar pointing Az. 180º, El. 60º 

FoR Az. 120º, El. 20º 

Error (σ) in range 5 m 

Error (σ) in angle 15’ 

Interval betw. obs. 10 s 

Table 1. Values for the simulated radar observations for 
radar tracklets association. 

After excluding from the total amount of detections the 
too short tracklets and those where the initial orbit 
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determination fails, a net number of 191 and 769 tracklet 
pairs remains for the simulations at 1000 km and 800 km, 
respectively.  
The tracklet association procedure follows the scheme 
described in [RD-7] but it does not filter the false 
associations according to an RMS threshold in the orbit 
improvement in order to see the efficacy of the distance 
threshold. The Mahalanobis distance in curvilinear 
coordinate [RD-4] and in the orbits space ℍ were 
calculated and an acceptance threshold of 10 was set for 
both distances. In these preliminary tests with nearly 
circular orbits the argument of latitude instead of the 
mean anomaly was used in the distance definition.  
Table 2 shows true and false associations using the 
Mahalanobis distance in curvilinear coordinates and in 
the orbit elements space. The results obtained with the 
orbit elements distance are slightly better than with the 
distance in curvilinear coordinates.  

 Curv. coord. Orbit elements 

1000 km 179 / 71 186 / 58 

800 km 728 / 4136 744 / 4107 

Table 2. True / false positives using the Mahalanobis 
distance in curvilinear coordinates and in the orbit 

elements space. 

7 Conclusions 

In the classical orbit association problem the alternative 
to the commonly used Mahalanobis distance in Cartesian 
or curvilinear coordinates is a definition of distance in the 
space of orbital elements. This space can be described by 
a different topology and the geodesic distance between 
two points can be calculated in the defined manifold.  
In this paper we showed that the distance between 
Keplerian orbits considering five orbit elements can be 
extended to include the difference in the mean anomaly. 
Also, the equation to compute the orbits distance is 
suitable to be expressed in the form of a Mahalanobis 
distance scaled according to the covariance of the orbital 
elements.  
Further analysis showed that an alternative definition of 
the orbits distance can be formulated using a Euclidean 
instead of a Riemannian metric. This alternative distance 
is even more suitable than the previous one to be 
expressed as a Mahalanobis distance because it consists 
only of a sum of squared terms instead of having a 
trigonometric term. From a topological point of view the 
two metrics are equivalent, but they use different scaling 
factors.  
Preliminary simulations using the distance in the 
Riemannian metric show slightly better results in terms 
of true and false associations than the conventional 
approach with curvilinear coordinates. However, more 

tests with, e.g., different orbits are necessary to assess the 
validity of the new distance definition, considering also 
the effects of the additional mean anomaly term and of 
the scaling in the Mahalanobis distance.  
Furthermore, the results of simulations using the two 
different metrics will have to be compared to evaluate 
their applicability.        
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