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ABSTRACT

The shape and attitude of resident space objects directly affect the orbit propagation via drag and solar radiation pressure. Obtaining
information beyond an object state also is integral to identifying an object, aid in tracing its origin and its capabilities. For objects
that have a significant distance to the observer, only non-resolved imaging is available, which does not reveal any details of the
object. So-called non-resolved light curve measurements, i.e., brightness measurements over time, can be used to determine the
shape of convex space objects using an inversion scheme. The inversion process starts by first determining the Extended Gaussian
Image (EGI) and then solving the Minkowski problem to obtain the closed shape result. However, the light curve inversion problem
is, by its nature, an under-determined problem. Hence, it is very sensitive to the sequencing of the observations collected. In this
paper, the observability assessment for the light curve shape inversion problem is developed. The methodology is then applied to
the observation sequencing of the Atlas V upper stage observed by the Astronomical Institute of the University of Bern (AIUB)
Zimlat telescope. It is shown how observability conditions change based on telescope constraints and desired shape resolution.

1. INTRODUCTION

Identification of resident space object (RSO) characteristics beyond position and velocity can significantly impact
the accuracy of orbit propagation due to drag and solar radiation pressure perturbation dependence on the shape and
material properties. However, optical measurements of RSOs are often non-resolved, not revealing any details about
the object because the distance between the observer and RSO is large. However, light curve inversion techniques
aim to extract RSO characterization information from brightness measurements over time, otherwise known as light
curves [1–7]. The inversion problem remains under-determined in its very nature. A light curve inversion technique
for reliable inversion of convex objects in the presence of significant measurement noise has been developed by Fan
and Frueh [1]. It relies on a variant of the process initially established by Kaasaleinen et al. [2]. These inversion
techniques rely on being able to be performed in the object’s body frame. Further details on the light curve inversion
process, its constraints, and limitations can be found in [1]. Attitude determination in the absence of shape information
is a complex topic to be solved without constraints. For time-stable, convex single-axis spinners, easy to implement
methods exist even in the absence of shape information (beyond the convexity constraint) [8–12].

As shown in [13], the inversion problem, even its restricted form, is very sensitive to the input light curves data
distribution. Inversion of unobservable cases cannot guarantee good inversion results and leading easily to detrimental
distortion on the output shape, having little in common with the true shape. The relation of observability and estimata-
bility for the orbit case has been illustrated in [14]. A workaround for light curve inversion has often been to demand
absurdly large amounts of data for the inversion, something often not feasible even within night time constraints of an
optical sensor and certainly not sustainable for characterization observation collection in a routine manner. Telescope
operators, on the other hand, often adopted a more or less random approach to collecting shorter light curves to fit
their operational constraints and balance observation time demands.

In order to find more efficient ways of collecting sufficient information for a shape inversion, an observability anal-
ysis for the light curve inversion problem has been developed. Observability, as a concept, explores the relationship
between the measurements and states of a system. Observability has first been developed in the context of control
theory [15–19] and has been applied to the RSO problem previously, focusing on the aspect of the orbital or orbital-
attitude observability [20–29]. In this paper, the observability for the light curve inversion problem is investigated
under the observation constraints of a real sensor.
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Furthermore, the additional constraint that only short observation batches of the light curve measurements can be
made. The batch lengths shown in this paper are 20 minutes each. In the presentation for this paper, the results for
10-minute batches are shown. In this paper, we focus on the application of the methodology to the Atlas V upper stage
14086B with real light curve measurement collected by the ZIMLAT telescope, located in Zimmerwald, Switzerland,
which is owned and operated by the Astronomical Institute of the University of Bern. A more comprehensive treatment
of the observability problem for shape inversion can be found in [13, 30].

2. METHODS

The light curve inversion process used as a baseline in this paper is depicted in Fig. 1, [1]. First, an Extended Gaussian
Image (EGI) [31] is estimated in a constrained least-squares approach; subsequently, the Minkowski problem is solved
in order to obtain adjacency information [32–34] via determination of each facet’s support. The estimation of the EGI
needs to be performed in the object’s body frame. The support, the distance of each facet to the center of the object,

Fig. 1. Light curve inversion process .

is unobservable for observer distances ¿¿ than the support itself, which is the case in non-resolved observations. It is
performed purely based on geometric principles. The light curve measurements are only used in the first step, the EGI
estimation. In this paper, we focus hence, on the observability of the EGI determination process only.

2.1 EGI Mapping
An EGI is a projection of an arbitrary shape onto the surface of a unit sphere. Deviating from the classical definition
[31], the surface areas are replaced via the albedo-area for the use in light curve measurements. For the discrete EGI
representation adopted in this paper, the quad-cube projection is used, with a tessellation number of m2×6 for m being
the number of facets per row and column on each side of the quad-cube projection. Examples of the EGI representation
method are given in Fig. 2. The original object shapes are given in the first column of Fig. 2. The second column of

Fig. 2. Shape representation with an EGI [1] leading to a tesselation of 150 facets for the cuboid and 294 for the Astra
satellite.

images in Fig. 2 show the dot representation of the EGI corresponding to each original object. The final column of
images give the facet representation of the EGI for each original shape.

2.2 Observability
Observability of the light curve inversion problem begins with analysis of the optimization problem for determining
the EGI:

J = |LLL−G aaa|2, (1)

where LLL is a vector of light curve measurements and aaa contains the albedo-area for each of the facets of the convex
polygon, the quantity that is desired to be esimated. G is the reflection model matrix, determining the contribution
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from each EGI normal direction under under a know light source strength and direction and observer geometry. Note
that each of the variables above are time varying, i.e. LLL = LLL(t), aaa = aaa(t), G = G(t). While solving this optimization
problem, common observability analysis matrix forms do appear. Methods for deriving the least squares solution
are implemented to come up with an ‘observability Gramian’ for this problem. Expanding the terms in Eq. 1 and
simplifying,

= LLLT LLL−2aaaT GT LLL+aaaT GT G aaa (2)

To find the least squares solution, âaa, the first derivative of J with respect to aaa is set equal to zero.

∂J
∂aaa

=
∂

∂aaa
[LLLT LLL−2aaaT GT LLL+aaaT GT G aaa] = 0 (3)

Finally, solving for âaa.
âaa = (GT G)−1 GT LLL (4)

The final step of solving for the optimum albedo-area for each of the surface normal directions relies on the assumption
that GT G is non-singular. This is a fundamental component of testing the observability of a system. If the matrix
can be inverted, then the system is said to be observable. For this problem, the observability relates to the ability to
generate the albedo-areas of the EGI given the geometric setup of the problem in G. Note that the optimization is
constrained to be positive as there cannot be negative albedo-areas.

3. RESULTS

The object of interest is the Atlas V upper stage with international designator 14068B. An approximated object is
shown in Fig. 3 with three different types of surface materials, denoted by the colors white, black and yellow, based
on known object specifications. Shape models are used for validation purposes.

Fig. 3. Three material upper stage model for validation.

3.1 Attitude Profile

Under the assumption of a stable main-axis spinning motion, which is not unreasonable for large upper stages with-
out significant slush fuel, the attitude has been determined. A likely attitude is determined using the methodology of
Williams et al. [9] under the knowledge of a known phase angle using three light curves. The methodology relies on the
coupling of the ratio of maximum brightness and minimum brightness with the spin axis. Using a single light curve,
the locus of potential right ascension and declination angles of the spin axis can be formed. The attitude can be con-
cluded from the intersection of two loci. The spin rate can be determined via Fourier analysis or periodogram methods.

Using the observational data of the night of May 9 2015 at 22:13 UTC over approximately 18 minutes, May 10
2015 from 22:51 UTC for approximately 14 minutes, May 14, 2:32 UTC lastin about 3 minutes. Koller determined
the attitude profile of 14068B [35], with a the inertially fixed spin axis with a right ascension of 298◦ and declination
of 9◦as the mean of the overlap of the three loci, and a period of 64.7 s.

In order to validate the results, a brute-force search method to determine the spin axis directly by simulating the light
curve using a full and a cylindrical simplified shape model and comparing it to the light curve measurements assuming
the rotation period is exact. The spin axis was sampled at 1◦ resolution for both right ascension and declination for
the May 10 light curve. Attitude A is defined by right ascension and declination of 318◦ and 9◦, respectively. Attitude
B is defined by right ascension and declination of 318◦ and 298◦, respectively. Profile A provides a slightly better fit,
hence, in the remainder of this work uses the attitude profile defined by Attitude A. Figure 4 shows the light curves
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generated using the full object model (Fig. 3), a two-material cylinder shape and a uniform cylinder shape model and
the observation data of May 10. It can be seen that the full model fits the observed light curve in orientation A the
best in terms of the features, but that there is an albedo offset, which can be traced back to aging. The two-material
cylinder, in orientation A and B fit the light curve well when the material properties are adapted, but it is missing out
on some of the more delicate features due to the simplified shape.

Fig. 4. Light curve comparison using different orientations of the spin axis and shape models.

3.2 Observability
Although the collected light curves provide sufficient measurements to find a good fitting attitude (albeit brute force
sampling also found a second slightly better fitting one), the collected light curves do not allow for a shape inversion.
Using the sensor location of the ZIMLAT sensor, the observation data of 14068B are approximated by a 20 minute
batch of measurements with measurement spacing of two seconds, resulting in 600 measurements within each batch.
The two second spacing is consistent with the CCD subframe technique used at the ZIMLAT telescope. A higher
sampling rate, for example, achievable with AIUB’s CMOS sensor, has been tested and did not provide advantages in
terms of observability for the given slow-changing attitude profile. For illustration purposes, constraint-free observ-
ability results are shown and contrasted with the observability results enforcing a minimum elevation of 15 degrees
and nighttime observation constraints, allowing only for observations between astronomical dusk and dawn.

Three EGI tessellations were used in this analysis with m = 5,7, and 13, leading to tesselations 150, 294, and 1014
surface normal directions on the EGI, respectively. The half-angle between two neighboring angles is 3.6 deg, 2.7 deg,
and 1.5 deg for tesselation of 150, 294, and 1014, respectively. In the subsequent figures, the rank of the EGI Gramian
over time and the EGI Gramian as a function of the number of measurements are shown, respectively. In addition, the
rank plots are zoomed in to show more detail near the full rank line, i.e., the number of surface normal directions on
each EGI, given by the black dashed line.

3.2.1 Tesselation 150

Figure 5 shows the rank results for an EGI tessellation of 150 surface normal directions on the EGI. When the rank of
the EGI Gramian reaches 150, the problem is considered full rank, and the number and spacing of measurements are
sufficient for inverting the EGI Gramian to solve for the albedo-area vector. For this epoch and system, a significant
amount of time is required until a sufficiently diverse geometry is offered to the observer to reach a full rank EGI
Gramian. A rank of 146 is reached within the first batch of measurements already, as seen in Fig. 5b and Fig. 5d, but
then the EGI Gramian does not become full rank until approximately 5 hours into the analysis time. Therefore, from
the end of the first batch of measurements until approximately 5 hours from the start of the analysis, the geometry of
the problem has not progressed enough for new measurements to increase the rank of the EGI Gramian. Additional
measurements collected during this time period do not provide additional observability, and the sensor can focus on
different tasks. Furthermore, Fig. 5b and Fig. 5d can be used to generate a more efficient strategy for obtaining light
curve observations to be used in a light curve inversion process. In Fig. 5d, the 6 and 8 hour batch spacing cases both
require the same number of batches, two, to reach full rank because the second batch for each case occurs after the
5 hour required time for the geometry of the problem to progress enough. Therefore, the 6 or 8 hour batch spacing
cases may be selected for obtaining observations over the 4 hour case because fewer observations are required while
reaching full rank of the EGI Gramian in the same amount of time or less. Hence, much flexibility is offered to adjust
the sensor schedule balancing the light curve measurements with other observation tasks.
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(a) Rank v. time (b) Rank v. time, zoomed in to show detail

(c) Rank v. number of measurements (d) Rank v. number of measurements, zoomed in to show detail

Fig. 5. Rank of the EGI Gramian for EGI tessellation of 150 facets.

3.2.2 Tesselation 294

Similar results for the rank of the EGI Gramian are shown in Fig. 6 with an EGI tessellation of 294 surface normal
directions. For the 6 and 8 hour batch spacing cases, the time to reach full rank is longer than the same batch spacing
cases of the smaller tesselation of 150. When the EGI tessellation is 158, the number of batches required is 2, but, not
surprisingly, for the EGI tessellation 294, the number of batches required is 3 for the 6 and 8 hour batch spacing cases.
Figure 6b shows how the 6 and 8 hour batch spacing cases reach a rank of 293 on the second batch of measurements,
but require a third batch of measurements to reach full rank of 294. However, the 0, 2, and 4 hour batch spacing
cases reached full rank in less than half the time of the 6 and 8 hour batch spacing cases. Therefore, the observability
analysis exactly quantifies the trade-offs that can be made between higher resolution on the EGI and the available
sensor observation time slots and limitations. It also shows that depending on the observation spacing, a higher
tesselation is possible with the same number of measurements and time constraints.

For an EGI tessellation of 294, the 4 hour batch spacing case may be more advantageous than the 6 and 8 hour
batch spacing cases because the time required for the EGI to reach full rank is shorter while the number of required
measurement batches is equal.

3.2.3 Tesselation 294

For a good resolution with an angle error of 1.5 degrees only, a tesselation of 1014 (m = 13) surface normal vectors
is desirable, being able to capture all of the bigger and medium sized features. For comparison, the simple cylindrical
upper stage shape model for validation has a tesselation of 150 normal vectors, the full model shown in Fig.3, 4912
normal vectors.
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(a) Rank v. time (b) Rank v. time, zoomed in to show detail

(c) Rank v. number of measurements (d) Rank v. number of measurements, zoomed in to show detail

Fig. 6. Rank of the EGI Gramian for EGI tessellation of 294 facets.

In Fig. 7, the rank reaches 1013 for all of the batch spacing cases analyzed, but then there is a significant time required
before the rank reaches 1014. The 2, 4, 6, and 8 hour batch spacing cases reach full rank in Fig. 7b, but the 10 hour
batch spacing case does not reach full rank within the analysis time. When the EGI tessellation number increases
considerably, there is one facet of the EGI, which is not ‘observed’ well, given equally space measurement batches.
Therefore, a long analysis time is required to achieve full rank for the EGI Gramian. A shorter time between batches
than what is tested here may have different results, but for the 1014 facet case with the time between batches of 2 to
10 hours, the EGI Gramian takes over 60 hours to become full rank. Using equally spaced measurement batches and
a shorter time between batches requires more observations, thus more resources which may not actually be required if
a different measurement sequence were implemented.

Next, a different approach than equally spaced batches was taken to determine a more efficient observation strategy
to reach a full rank of the EGI Gramian. Figure 8 contains an unconstrained case with unequally spaced batches and
two cases where constraints are imposed on the measurement times. The measurement batches are constrained by the
solar depression angle and the object visibility given elevation constraints at the ground station. The night hours of
the ground station are defined by a solar depression angle of 18◦ and the minimum elevation for object visibility is
15◦ at the ground station. The start times of each batch for each of the three cases are summarized in Table 1. First,
the unconstrained case of Fig. 8 used results from the equally spaced analysis with m = 13 to space two 20 minute
batches by 6 hours and then a third batch at 64 hours from the end of the second batch. This case does not consider any
observation constraints based on object visibility or elevation. The first constrained case spaces two batches within
the first visibility window spaced by 1.5 hours and then two more batches spaced by 1.5 hours in a visibility window
after approximately 71 hours from the second batch. The second constrained batch spacing case contained one batch
in each visibility window until full rank of the EGI Gramian was reached. If the object was not visible on a given
night, e.g., after about 160 hours, a measurement batch did not occur.

6195.pdfFirst Int'l. Orbital Debris Conf. (2019)



(a) Rank v. time (b) Rank v. time, zoomed in to show detail

(c) Rank v. number of measurements (d) Rank v. number of measurements, zoomed in to show detail

Fig. 7. Rank of the EGI Gramian for EGI tessellation of 1014 facets.

Table 1. Unconstrained and constrained batch start times, given in hours.

Unconstrained Constrained 1 Constrained 2
Batch 1 0.0 0.0 0.0
Batch 2 6.333 1.8333 24.0
Batch 3 70.667 73.1667 48.0
Batch 4 – 75.0 74.0
Batch 5 – – 99.0
Batch 6 – – 124.05
Batch 7 – – 213.5

Figure 8 shows the rank of the EGI Gramian for the unconstrained batch spacing case and the two constrained batch
spacing cases. The windows for night and object visibility are shown, with the night window given in gray and
the visibility window given in green. The unconstrained case reaches full rank the fastest, which is expected as the
observation times were selected using previous analysis from Fig. 7. The first constrained case reached full rank during
the fourth batch of measurements, as seen in Fig. 8b. The second constrained case took significantly longer to reach
full rank. This case only had one batch per visibility window, but after approximately 50 hours, the rank reached the
same value as the other two cases. However, three more batches of measurements were required to reach full rank.

Figure 8c and Figure 8d show the rank of the EGI Gramian versus number of measurements. The unconstrained case
required the fewest measurements to become full rank since the first constrained case had a second batch within the
second night of observation. The unconstrained case was able to become full rank with only one batch of measurements
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(a) Rank v. time with night and object visibility windows (b) Rank v. time, zoomed in to show detail

(c) Rank v. number of measurements (d) Rank v. number of measurements, zoomed in to show detail

Fig. 8. Observability results for unconstrained and constrained measurement sequences. Rank of the EGI Gramian for
EGI tessellation number = 13 or 1014 facets.

in the second night because the first two batches of measurements were spaced by more time; hence a greater geometry
changed, and the third batch occurred in a more optimal position for the attitude and observer-object-Sun geometry.

For this EGI tessellation of 1014 facets, observing multiple batches within each visibility window is advantageous over
one batch per visibility window as there are only 600 measurements per batch, and a greater geometry difference can
be ensured if batches are taken twice in a visibility window. If only one batch of measurements occurs per observation
window, the sampling of the geometry with the measurements may not be as diverse over two nights compared to two
batches spread over one night. Even though the unconstrained case reached full rank faster than the first constrained
case, selecting observation times using realistic visibility constraints to reach full rank of the EGI Gramian is possible
through observability analysis. Observations do not need to be taken continuously or often during a visibility window
to achieve full rank of the EGI Gramian.

4. CONCLUSIONS

The observability analysis for the shape inversion problem from un-resolved light curves has been developed. It
is based on an inversion method that first estimates the extended Gaussian image followed by a geometric solution
for the surface facet’s adjacency relations or support. For the light curve inversion process to be successful, it is
necessary for the Extended Gaussian Image (EGI) Gramian to be full rank. Observability analysis allows determining
an observation schedule that is time and observation number efficient and allows for balancing other observation
needs in the presence of observation constraints. The schedule differs depending on the desired shape resolution to be
obtained in the inversion.
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This paper focuses on the application of the methodology for observation planning for the ZIMLAT telescope, located
in Switzerland, and the shape inversion for the Atlas V upper stage. The Atlas V upper stage has been assumed to
be a constant single-axis spinner, and an attitude solution has been determined using three light curves. The attitude
solution has been confirmed in brute force validation computations, along with a second suitable attitude solution.

Using the observability analysis, 20 minute measurement batches have been assumed with various spacings. Initially,
the measurement batches were equally spaced, and the time for the EGI Gramian to reach full rank was investigated.
Without constraints on the measurement times, three batches were required to reach full rank for a shape resolution
of a half-angle error of 3.6, 2.7, and 1.5 degrees corresponding to a 150, 294, and 1014 facet EGI, respectively. With
night time and minimum elevation constraints, four measurement batches were required to reach a full rank EGI for the
1014 facet EGI. In the constraint case, the scenario with two measurement batches per visibility window requires fewer
measurements and less overall observation time, compared to the scenario with one observation batch per visibility
window. The analysis shows that there is flexibility in the sensor scheduling, as observations are only required within
a time region rather than a specific exact time to reach full observability.

It has been shown that observability analysis of a system can be used to select an efficient observation plan with
sufficient geometric sampling for light curve shape inversion.
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