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Abstract 

Radar observations are used to track space objects in the 
Low Earth Orbit region. The observations consist of short 
arc tracks containing range and angular information. The 
association of two or more observed tracks of the same 
space object is in general necessary to calculate the orbit 
of the object with a better accuracy. In the radar case the 
availability of range and angle measurements allows the 
computation of an initial orbit from a single track. As a 
consequence, the association of tracks can be based on a 
direct comparison of the calculated initial orbits.  
In this work a new definition of distance between 
Keplerian orbits is proposed. The definition extends the 
existing formulation based on only five Keplerian orbital 
elements without the anomaly. The modified distance 
considers an additional term due to the anomaly. The 
obtained distance can be scaled as a function of the 
covariance of the orbital elements and can be expressed 
as Mahalanobis distance. Some application of the 
distance definition is shown and compared with results 
obtained using the orbital distance in curvilinear 
coordinates. 

1 Introduction 

Validating and improving space debris environment 
models requires regular monitoring of the space debris 
population. Today, statistically sufficient data is acquired 
by conducting optical surveys and by radar beam-park 
experiments. The data acquisition strategy implies that 
recent orbital data of the characterised objects are 
available and are maintained in a catalogue. The build-up 
of a catalogue and its maintenance depends on the 
capacity to determine the orbits of the observed objects 
from few measurements. In fact only a limited number of 
observations are available per night per object, each over 
observation arcs that can be as short as a few seconds. 
Therefore a single track, regardless of measurement type, 
often does not contain sufficient information in order to 
reliably estimate the observed object’s state or conduct 
follow-up observations. For this reason the sparse 
observations or short sequences of observations 
(tracklets) need to be correlated or associated with each 
other. Several approaches for optimal association or 
correlation have been described. The developed methods 
mainly relate to observations from optical sensors, as e.g. 
in [RD-1][RD-2][RD-3]. Nowadays several radar sensors 
are fully or partially devoted to space surveillance. 
Independent of illumination and weather conditions, 
radar systems provide observations of space objects in 

low and medium earth orbits.  
In the correlation of radar data Gronchi et al. propose in 
[RD-4][RD-5] methods to correlate radar data based on 
the Keplerian integrals, while in [RD-10] the orbits from 
single tracklets are determined and then compared.  
In this paper an association scheme similar to the one 
proposed in [RD-10] and described in [RD-11] is 
assumed:  
 calculation of initial orbit from radar tracklet 
 propagation of orbit to epoch of second tracklet 
 comparison of propagated orbit with orbit calculated 

from second tracklet (orbit matching) 
 least squares orbit computation from the 

observations in the two associated tracklets   

To compute the initial orbit the “Range and Angles 
method” described in the Goddard Trajectory 
Determination System (GTDS) document [RD-7] is 
used. The obtained initial orbit has still to be refined with 
a least squares approach where ranges and angles are 
weighted differently.  
The orbit matching can be evaluated using a definition of 
distance between two orbits. The matching is then 
successful if the distance is smaller than a given 
threshold. Often the definition of Mahalanobis distance 
is used as a measure of the goodness of the association. 
The limitation with this measure is in the description of 
the uncertainty distribution, modeled according to the 
covariance in a Gaussian distribution. Mostly the 
Gaussian assumption is enough to describe the 
uncertainty in the orbital parameters, but depending on 
the coordinate system the inadequacy can be accentuated 
(see e.g. [RD-9]). An appropriate coordinate system can 
be found where the Gaussian assumption approximates 
the actual distribution. Curvilinear coordinates [RD-
8][RD-9] are usually more suitable to describe the orbital 
uncertainty distribution. Essentially the transformation to 
curvilinear coordinates takes into account the real curved 
trajectory of the target.  
Other definitions of orbital distance are related to the 
topological space characterized by the orbital elements. 
Several studies tried to investigate the topology of the 
space of Keplerian orbits. Moser [RD-12] first studied 
the space of constant energy surfaces for bounded 
Keplerian orbits. He showed that this space is 
topologically equivalent to the Cartesian product of two 
spheres. In [RD-13][RD-14] further metrics are proposed 
as well as applications. An explicit formula for the 
geodesic distance between points in this space was 
derived in [RD-15][RD-6].  
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In this work a new definition of distance is proposed 
which includes the anomaly in the definition in [RD-6] 
based on five Keplerian orbital elements. The obtained 
distance can be scaled as a function of the covariance of 
the orbital elements and can be expressed as Mahalanobis 
distance. 

2 Distance between Keplerian orbits 

In [RD-6] the space of bounded Keplerian orbits of fixed 
energy is described using the topology V(E) ~ S2 x S2, the 
Cartesian product of two spheres. This topology is 
extended through the semimajor axis to the cone K(S2 x 
S2). The formula to compute the geodesic distance 
between points in this space is:  

� � �2���� 	 ��� 
 2���� cos�                   (1) 

where    � � �������������∙������������������∙�����
�         (2) 

and         �� � �� 	 ���,									�� � �� 
 ���.                             (3) 

Here is �� the eccentricity vector and ��� a normalized 
angular momentum vector ��� � ����

√� given the semimajor 
axis a and the gravitational parameter μ. The related 
Riemannian metric is induced by the Euclidean metric on 
�6. In the article it is mentioned that the geodesic distance 
on K(S1 x S1) can be generalized to a manifold with n 
spheres K(S1 x … x S1) ∁ �2n. The definition in (2) is then 
replaced by a general expression which contains not only 
specifically the angle differences on the sphere for �� and 
��, but additional angles for any additional sphere:
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We want to extend the distance between two orbits (1) to 
all 6 orbital parameters including the orbit anomaly. We 
can describe the problem with a topology K(S2 x S2 x S1) 
∁ �6 where the sphere S1 is related to the eccentric 
anomaly, according to the construction in [RD-12]. Then 
we have in (4) an additional angle difference θi. For 
nearly circular orbits instead of the eccentric anomaly we 
consider the argument of latitude u, which is more stable 
w.r.t. correlated errors between true anomaly and 
argument of perigee.  
The formula (1) in �2 is simply the distance d in the 
triangle shown in Figure 1 calculated with the law of 
cosines. If ψ is small d can be approximated by: 

� � ���� 
 ���� 	 ������                 (5) 

For the generalization in �6 the eq. (4) for the angle ψ has 
to be used instead.  

Figure 1: Triangle showing the relation between a1, a2, 
ψ, and d in	�2.  

The sum of squares appearing in (4) and (5) suggests the 
possibility to scale the summands according to their 
uncertainty as in the Mahalanobis distance. We define the 
vector: 
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where �� � ���������� ∙ ���� and �� � ���������� ∙ ����. 
To find the covariance matrix ��� � ������� we calculate 
the matrix of the partial derivatives with the components 
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where �� � ���, … , ��, ��, … , ��� contains the orbital 
elements of the two orbits. Setting ��� � ������� we 
have: 

��� � �����¡.                           (8) 

The Mahalanobis distance dM is obtained from: 

�¢ � ���¡���£���                         (9) 

3 Simulations 

Radar measurements of LEO objects on almost circular 
orbits (eccentricity < 0.01) at altitudes around 1000 km 
and 800 km were simulated. The objects from the Space-
Track TLE catalogue are observed during one night from 
a station at 40º latitude. Table 1 shows the values used 
for the simulation.  
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 Radar pointing Az. 180º, El. 60º 

FoR Az. 120º, El. 20º 

Error (σ) in range 5 m 

Error (σ) in angle 15’ 

Interval betw. obs. 10 s 

Table 1. Values for the simulated radar observations for 
radar tracklets association. 

The tracklet association procedure with the above 
described scheme was applied. In the initial orbit 
determination only tracklets with at least 3 observations 
were considered. The Mahalanobis distance in 
curvilinear coordinate and in the orbit space were 
calculated and a threshold of 10 was set for both 
distances. In the least squares calculation of initial and 
final associated orbit a threshold of 5 for the RMS was 
chosen as upper limit to discard wrong associations.  
After excluding from the total amount of detections the 
too short tracklets and those where the initial orbit 
determination fails, a net number of 191 and 769 tracklet 
pairs remains for the simulations at 1000 km and 800 km, 
respectively.  

4 Results 

The correlation performance comparison for different 
distance definitions was conducted in terms of true and 
false positives using the simulated data. Table 2 shows 
the results using the Mahalanobis distance in curvilinear 
coordinates and in the orbit elements space. For these 
tests the RMS from the final orbit computation after the 
association is not used to discard wrong associations. So 
the ratio true/false positives is only due to the threshold 
applied to the orbit matching.  

Curv. coord. Orbit elements 

1000 km 179 / 71 186 / 58 

800 km 728 / 4136 744 / 4107 

Table 2. True and false positives using the Mahalanobis 
distance in curvilinear coordinates and in the orbit 

element space. 

The results obtained with the orbit elements distance are 
better than with the distance in curvilinear coordinates. 
This can also be noticed in the distribution of the 
Mahalanobis distance in Figure 2 and Figure 3. Using the 
orbit distance the distribution of true positives is slightly 

shifted to smaller distance values, compared to the 
curvilinear coordinates case, while a smaller amount of 
false alarms is present in the range up to the threshold of 
10. 

Figure 2: Distribution of distance in curvilinear 
coordinates for the case at 1000 km. 

Figure 3: Distribution of orbit distance for the case at 
1000 km. 

The orbit region at 800 km is much more crowded and 
this is clearly visible in Figure 4 and Figure 5 where the 
number of false positives strongly increases at higher 
distances. The method with the orbit distance still 
performs better than the one using curvilinear 
coordinates. 

Figure 4: Distribution of distance in curvilinear 
coordinates for the case at 800 km. 
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Figure 5: Distribution of orbit distance for the case at 
800 km. 

The high number of false alarms indicates that a second 
threshold on the RMS of the final orbit computation after 
the association is necessary. Table 3 shows the 
correlation results including the RMS threshold to accept 
or reject the association. There is a slight decrease in the 
true positives but a massive reduction of false positives. 

Curv. coord. Orbit elements 

1000 km 156 / 20 159 / 15 

800 km 530 / 501 536 / 431 

Table 3. True and false positives using the threshold in 
the distance and in the orbit RMS. 

5 Conclusions 

Two different distance definitions for orbit matching 
were compared by assessing the correlation performance. 
The alternative to the commonly used Mahalanobis 
distance in Cartesian or curvilinear coordinates is a 
definition of distance in the space of orbital elements. 
This space can be described by a different topology and 
the geodesic distance between two points can be 
calculated in the defined manifold. The distance between 
Keplerian orbits can be extended to include the difference 
in the anomaly. The structure of the equation to compute 
the orbit distance allows additional weights to be added 
to obtain a Mahalanobis distance scaled according to the 
covariance of the orbital elements. The results show that 
using the alternative distance better true and false 
positives rates can be achieved. Besides the importance 
of the distance definition, it is shown that a second 
criterion for orbit matching based on an RMS threshold 
is necessary to effectively reduce false associations.   
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