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ABSTRACT

Modern society depends heavily on satellite 
infrastructure. However, Space becomes more and more 
congested by space debris from over 50 years of space 
activities. This growing threat in orbit must be 
monitored. The aim of the ESA GSTP activity „Optical 
In-Situ Monitor“ is to design and test a breadboard of a 
space-based space debris camera and to develop and test 
its end-to-end processing chain.  

The on-board processing functions will focus on the 
payload image processing in order to reduce the data 
volume (image segmentation for streak detection).  

The suitable technologies for the processing units will 
be described: the HPDP, an ARM-Cortex R5F processor 
and Microsemi’s RTG4 FPGA. For image processing, 
several algorithms were tested extensively: the CCSDS 
122.0-B-1, the Boundary Tensor and the Differences 
Method. 

This paper shows the results of the project and gives an 
overview of which combination of processor-algorithm 
yields the most promising results for our mission. 

1. INTRODUCTION 

Space becomes more and more congested by space 
debris from over 50 years of space activities [1][2]. This 
growing threat in orbit must be monitored in order to 
sustain safe access and operations of the space 
infrastructure [3][4][5]. 

The aim of the ESA GSTP activity „Optical In-Situ 
Monitor“ is to design and test a breadboard of a space-
based space debris camera and to develop and test its 
end-to-end processing chain. The corresponding future 
flight model shall be used for the detection of small-

sized (down to 1 mm in diameter) space debris in LEO 
as well as larger objects in GEO. It is intended to be 
flown on a platform in sun-synchronous orbit near the 
terminator plane. The breadboard system will constitute 
a unique facility to perform realistic tests of the end-to-
end processing chain for debris observations within a 
controlled environment. 

The on-board processing functions will focus on the 
payload image processing in order to reduce the data 
volume. The suitable technologies for the processing 
units are: the HPDP [6], an ARM-Cortex R5F processor 
[7] and Microsemi’s RTG4 FPGA [8]. 

For image compression, the CCSDS 122.0-B-1 [9] 
algorithm was initially tested. For on-board object 
detection, both the Boundary Tensor [10][11][12] and 
the Differences Method [13] were tested extensively. 

2. CANDIDATE PROCESSORS 

The on-board processing functions will focus on the 
payload image processing in order to reduce the data 
volume (image segmentation for streak detection). 
These on-board image processing requirements are 
challenging in terms of on-board processing 
performance. First assessments of the on-board 
functionality show an input data rate of ca. 100 
Megabits per second (Mbps) and a required integer 
processing rate of at least 5 Giga-operations per second 
(GOPS) with at least 16 bit accuracy. Baseline for this 
assessment is a frame rate of one 2000 pixels × 2000 
pixels image per second and a feature detection 
algorithm for data reduction. A buffer memory of 128 
Megabytes (MB) must be envisaged for intermediate 
storage of the image during the processing steps. Power 
Consumption for the processing part should not exceed 
20 Watts. 



The suitable technologies for the processing units can be 
summarised into three different categories: General 
Purpose Processors (GPP)/Digital Signal Processors 
(DSP), Field Programmable Gate Arrays / Application 
Specific Integrated Circuits (FPGAs/ASICs) and 
Specialised Processing Units (SPU). GPPs, and also in 
part DSPs, provide the easiest development 
environment and highest developer productivity but the 
throughput rate can be rather low compared to an FPGA 
or some Specialised Processing Units and the power 
consumption relatively high. For IN-SITU, an ARM-
Cortex R5F processor was tested. FPGAs are mass 
produced devices containing numerous look-up tables 
and other elements interlinked by configurable 
interconnects. This approach is less efficient than ASICs 
since there will inevitably be unused elements of the 
FPGA. However it offers greatly enhanced flexibility. It 
combines multiple cores with different characteristics to 
allow efficient mapping of algorithms with high 
processing demand. For IN-SITU, Microsemi’s RTG4 
FPGA was tested. Finally, most SPUs are essentially an 
array of processing elements with efficient access to 
memory. The increased specialization makes them more 
efficient but more difficult to program. For IN-SITU, 
the HPDP falls into this latter category. 

2.1.High/Performance Data Processors 

The HPDP, based on the XPP-III Core by PACT XPP 
Technologies is a radiation hardened, reprogrammable 
array processor, a 16 bit architecture designed in 65nm 
STM C65SPACE technology [15]. The main 
component of the XPP-III Core represents a dataflow 
array, consisting of two-dimensionally arranged 
Processing Array Elements (PAEs), connected by a 
communication infrastructure that can be reconfigured 
at runtime, as well as the operations performed by each 
PAE. 

The XPP core architecture is modular in nature and 
consists of a number of reconfigurable Processing Array 
Element (PAE) connected by a reconfigurable data and 
event network where the data path can go from top to 
bottom or vice-versa. Two types of PAEs exist: an 
Arithmetic-Logic Unit (ALU) PAE and a Random 
Access Memory PAE. The vertical data in the 
architecture and event routing channels are always 
contained within a PAE, in the form of Forward 
Registers (FREGs) that route data vertically from top to 
bottom, and Backward Registers (BREGs) that route 
data vertically from bottom to top. 

The array network is enhanced by Very Long 
Instruction Word (VLIW-type) processors called 
Function-PAEs (FNCs), which are used for controlling 
and configuring the network and execution of control 
type processing. 

2.2.Microsemi RTG4 FPGA 

Microsemi's RTG4 device is the fourth generation of 
flash based FPGAs, designed for applications in space. 
The number of logic gates, registers and specialised 
multiplier blocks is significantly higher than in the 
current generation of FPGAs. Therefore the device is 
announced to be suitable for signal processing tasks in 
satellite applications. Airbus Defence and Space GmbH 
in Ottobrunn has evaluated this device using an 
evaluation board from Microsemi by porting one of 
their Global Navigation Satellite Services (GNSS) 
applications onto the technology. 

2.3.ARM Cortex R5F 

The ARM Cortex R5F was another evaluated option and 
is a Reduced Instruction Set Computer (RISC) based 
microprocessor design featuring a Dual-Core Central 
Processing Unit (CPU) that is able to run in a Lock-Step 
configuration. As this allows to run the CPU in a 
redundant mode detecting errors during CPU 
operations, it is used in safety-critical applications as 
automotive braking systems (ABS), electric power 
steering (EPS), railway communications but also in 
aerospace and avionics. It implements the ARMv7-R 
architecture and is able to use the Thumb-2 instruction 
set (a slightly reduced ARM instruction set where both 
16 and 32 bit instructions can be used). 

As for processing performance, the R5F provides 
dynamic branch prediction using a global history buffer, 
which allows the CPU to guess or predict which branch 
will be taken in a code condition. Such a branch 
prediction is in particular useful with the available 8 
stage pipeline. This is done by the PreFetch Unit (PFU) 
that can fetch instructions (also on a speculative basis) 
and data via the Data Processing Unit (DPU) to increase 
the performance of the instruction stream on the R5F. 

The processor also has an L1 (level 1) memory system - 
essentially a cache very close to the CPU - and can 
handle up to 64KB for both instruction and data 
(Harvard architecture) and is interconnected with a 
Memory Protection Unit (MPU) and Tightly Coupled 
Memory (TCM) areas. Featuring up to 12 distinct 
memory regions, the MPU can configure each one with 
separate attributes, as e.g. shared memory, cached 
(write-through and write-back) and non-cached regions. 
Also access permissions can be set separately. Each 
cache can have an enabled TCM (dedicated fast RAM) 
with an optional error detection and correction 
mechanism to protect the stored data. 

If the TCM and L1 cannot satisfy a data or instruction 
fetch, the request is forwarded to the L2 (level 2) system 
via the AXI master interface. It can then handle the 



request via an AXI slave interface, three peripheral 
interfaces (AMBA AXI and optional AHB access) to 
access peripherals or the Accelerator Coherency Port 
(ACP) interface, in case the multi-core configuration is 
used. 

The above described R5F design is implemented in the 
Texas Instruments TMS570LC4357 microprocessor, 
which is later used for the actual implementation of the 
Differences Method. This CPU has various dedicated 
peripherals that are connected to the AHB/AXI 
interfaces, amongst others an external memory interface 
(EMIF), a Peripheral Interconnect Subsystem featuring 
various modules as for example DMA, Ethernet Mac 
(EMAC) and multiple communication modules as SPI, 
I2C, CAN, etc. 

The TMS570LC4357 is built with 4 MB on-chip flash 
memory with error-correcting code (ECC), 512 KB of 
internal static random access memory (SRAM) with 
optional Error Correcting Code (ECC) and is running at 
300 MHz, providing up to 1.66 Dhrystone MIPS per 
MHz when used with an 8-stage pipeline. 

2.4.NANOXPLORE NG-MEDIUM and NG-
LARGE 

NanoXplore is a French start-up focused on designing 
high-performance FPGAs, also space qualified, and 
since both design and production are done in Europe, 
their products are ITAR-free. This detail, added to a 
competitive price, make NanoXplore’s NG-Medium and 
NG-Large very convenient and interesting alternatives 
to current ITAR-sensitive FPGAs. 

The NG-MEDIUM was designed, verified and 
manufactured using 65nm CMOS technology from 
STMicroelectronics, it is radiation hard and is delivered 
with a set of self-developed tools used for design, 
synthesis, Place&Route. The NG-Medium has a 
capacity of 550.000 ASIC gates, 32256 registers, 112 
embedded DSPs, 1 SpaceWire link (400Mbps) and 24 
clocks.  

The NG-LARGE was designed, verified and 
manufactured using 65nm CMOS technology from 
STMicroelectronics, it has 1900000 ASIC gates, 129024 
registers, 384 embedded DSPs 1 SpaceWire link 
(400Mbps) and 32 clocks. Embedded in it there is a rad-
hard ARM Cortex-R5x.  

3. CANDIDATE ALGORITHMS 

For image compression purposes, the CCSDS 122.0-B-1 
algorithm was tested while for on-board object 
detection, both the Boundary Tensor and the 
Differences Method were tested extensively. 

3.1.CCSDS 122.0-B-1 

The CCSDS 122.0-B-1 is an image compression 
standard published in 2005 by the Consultative 
Committee for Space Data Systems (CCSDS), which 
also released other compression standards for arbitrary 
and hyperspectral data. It is a recommendation for 
compression of two-dimensional grayscale image data 
and was specifically designed for on-board processing 
of payload data on spacecrafts. The aim of the 
recommendation is to provide an image compression 
standard that can be implemented despite the limited 
computational power and memory [9][16]. 

Two different modes for lossless and lossy compression 
are supported. Lossless compression is achieved by 
quantization and entropy coding, for lossy compression 
in addition image information is removed, depending on 
compression factors and beginning with the least 
important information. 

The compression is based on a Discrete Wavelet 
Transform (DWT). The resulting sub-bands of the 
original image signal are then compressed by a Bit 
Plane Encoder (BPE), as seen in Fig. 1. 

Fig. 1. Functional parts of the CCSDS 122.0-B-1 
recommended standard (CCSDS, 2005)-. 

3.2.Boundary Tensor 

The boundary tensor [11] is a symmetric and positive 
semi definite tensor with non-negative eigenvalues λ1
and λ2 and with the positive semi-definite symmetric 
tensor T of order 2. 

These eigenvalues represent the variations in the pixel 
intensity in the direction of their orthogonal 
eigenvectors. In other words, the boundary tensor 
analyses the area around the processed pixel, and 
provides a local base showing the direction of the 
intensity variation, and the strength of the variation. As 
such, if λ1 and λ2 are both null it means that the area of 
the image has pixels of constant intensity. If λ1 is strictly 
positive and λ2 is null (λ1 ≥ λ2) by definition) then the 
pixel intensity is only changing in the direction given by 
the eigenvector associated to λ1: an edge is detected. If 
λ1 and λ2 are both not null, it means that pixel intensity 
changes in all the directions in the area of the image: a 
corner is detected. 

To build the boundary tensor, a set of separable polar 
filters is applied to the image which is to be analysed. 



These filters are defined as the product of an angular 
and a radial function in order to optimize its frequency 
behaviour. It will also help getting the invariance to 
rotations. The first step in applying the filters to the 
image is done by convoluting the image with each filter 
row-like, taking into account the intensity of each pixel 
and the coefficients of the filter. 

In practice, the filter coefficients are taken equal to zero 
outside a radius r. r = 4 will be the used value, as it 
represents a good compromise between complexity and 
precision. 

The result of the row-like convolution is then again 
convoluted with the filters, but this time column-like. 
For the algorithm, the kernels were chosen equal to 
those taken by Diego Andrés Suárez Trujillo in his 
implementation of the algorithm on a HPDP [12]. 

After having simulated several algorithms on the HPDP 
(compression, boundary tensor and several 
communications algorithms) Airbus can point out which 
algorithms are most appropriate for the chosen 
architecture. This architecture, commonly used in space 
applications, is especially performant with loops, as 
these are processed in parallel. However, sequential 
programs are executed slowly. In contrast, a typical PC-
architecture (i.e. programmed in C) is slow for loops, as 
they cannot be executed in parallel, but very fast for 
sequential execution. 

There is a hardware limitation that for the HPDP data 
types should be preferably 16-bit fixed-point arithmetic, 
which can be interpreted as using “short integers” 
instead of “reals” in C. For the on-board image 
processing S/W module, this fact must be considered 
when choosing the corresponding algorithms for feature 
detection and filtering. Floating point could be emulated 
on on-board H/W, but with high degradation of 
performance. 

The boundary tensor can be split in the odd energy 
which accumulates in the step edges and in the even 
energy which accumulates in the roof edges. 
The final step of the algorithm is to determine if a pixel 
corresponds to a resident space object (RSO) or not. In 
order to do so, it is necessary to extract from the 
boundary tensor a measure of the probability of the 
pixel being an edge. The tensor trace is actually the 
energy contained in the edges: it is the sum of the 
eigenvalues of the tensor. 

3.3.Differences Method 

The basic idea of this final algorithm is to compare two 
frames to detect the changing features. The registration 
(alignment and scale transformations) between the two 
frames is critical to perform a comparison well enough. 

Usual image treatment tools are used in post-processing 
manner and allow transformation at a sub pixel level. 
The following assumptions are made: 

(1) Alignment at the pixel level (integer displacement 
vectors) with an afterwards binning. 
(2) Rotation and scale transformations can be 
approximated as a number of displacement vectors on 
an equal number of sub-frames. 
(3) Selection of the features and their surrounding can 
be made on the base of the binned pixels. 
For the complete on-board segmentation the following 
steps are suggested. 
(1) Remove the saturated stars. 
(2) Find the brightest non-saturated stars. 
(3) Divide the whole frame into 5 x 5 pixel sub-frames 
and estimate the displacement vector for each of them. 
(4) Execute a binning on two frames taking into account 
the displacement vectors. 
(5) Subtract one frame from the other. 
(6) Pixels with values over (under) a threshold are 
selected as potential streak of the frames being 
processed. 

3.4.Algorithm Trade-Off 

The On-Board Processing Pipeline (OBPP) was 
developed within this project by the Astronomical 
Institute of the University of Bern, Switzerland. The 
main objectives of the OBPP are the autonomous on-
board data reduction, preliminary image segmentation 
and object detection. These steps are critical and lead to 
an effective on-board processing pipeline optimizing the 
downlink bandwidth usage. 

3.4.1. Properties of the Boundary Tensor 

In terms of performances, Matlab simulations 
performed by AIUB show that the SNR obtained in 
resulting images processed by the Boundary Tensor 
which was implemented with the RTG4 yields 3.8. 

Concerning the time needed to process one single image 
using the Boundary Tensor, the HPDP implementation 
needs over 0.734 s, while the RTG4 only needs 0.06 s, 
which is much faster than the requirement of 1 s for 
processing 2 images for the IN-SITU project. The 
difference in timing between the two implementations 
can be explained by the fact the FPGA can process all 
the convolutions at the same time, as well as calculating 
the output, without needing to write any data in an 
external memory, unlike the HPDP. The resulting 
images, as seen in Fig. 3 to Fig. 5 (Fig. 2 was the input, 
an original image obtained with a telescope from 
AIUB), show that the boundary tensor algorithm can 
also detect streaks of different intensity.  



Some small differences can be observed between the 
results of the implementation on both architectures 
(HPDP and RTG4). After an analysis of the dataflow of 
both architectures, it has been noted that the one on the 
HPDP had to scale up the kernel coefficients with a 
multiplying factor in order to make them bigger than 1. 
The RTG4 architecture uses fractional length to deal 
with this problem. The kernels used by the HPDP 
simulation must make the architecture a more sensitive 
one, as it seems to detect more debris, but also gets 
more noise. As a conclusion, both hardware 
architectures are comparable in terms of output results; 
the only difference is that the HPDP version changes the 
kernel coefficients and the threshold value while scaling 
them up, which takes processing time. 

3.4.2. Properties of the Differences 
Method 

The sensitivity of the Differences Method was tested by 
AIUB. Matlab simulations show that the SNR obtained 
in resulting images processed by the Differences 
Method is 2.5 and final results show that this algorithm 
can detect faint debris streaks down to a peak SNR of 
1.2. 

Only a part of an image was selected in order to get an 
input 2048x2048-pixel frame, as required (this image is 
visible in Fig. 6). The Matlab model was launched, and 
its output signal was used to build the binary output of 
the processed picture, visible on Fig. 7. Similarly with 
input image in Fig. 8, which was synthetically 
generated, its output (Fig. 9) also produces faint streaks. 
A zoom into Fig. 6 shows that some noise is detected as 
debris, like the single dot at the right of Fig. 5, which 
does not seem to be a streak, but noise. 
The implementation with the ARM Cortex processor 
shows that timing constraints can be met: 2 images can 
be processed in less than 0.8 seconds. However, some 
optimisation is still needed on this platform as not all 
images yield this result: too many stars or streaks may 
increase the processing time. 

Fig. 2. Input original picture obtained by AIUB with a 
telescope during a night observation. This is the input 

image used to test the Boundary Tensor implementation 
with the RTG4. 

Fig. 3. Result obtained by the RTG4 boundary tensor 
implementation where the input was Fig. 2. 



Fig. 4. Zoom into the input picture shown in Fig. 2. 
Even though intensity of streaks varies, in the original 
image, the Boundary Tensor algorithm can still detect 

them 

Fig. 5. Zoom into Fig. 8, input picture is Fig. 2. The 
dot to the right of the image is noise. 

Fig. 6. Only part of the original synthetic image was 
taken in order to get a 2048 pixel by 2048 pixel frame. 

SNR of streaks are 1.5 and 4 in this frame. 

Fig. 7. Output of the differences method where input 
was Fig. 6. Stars in the background have been reduced 
or completely eliminated; only the area around streaks 

and objects of interest is visible. 



Fig. 8. Original frame synthetically generated by 
AIUB. SNR of streaks are 1.2 and 6 in this frame. 

Fig. 9. Output of the differences method where input 
was Fig. 4. It is noteworthy that the algorithm can 

detect very faint streaks and objects. 

3.4.3. Algorithm Trade-Off Conclusion 

As can be seen from Fig. 2 through 9 and Table 1, the 
Differences Method algorithm offered valid results 
within the timing requirements of 2 images / second. In 
terms of sensitivity, Matlab simulations performed by 
AIUB show that the SNR obtained in resulting images 
processed by the Differences Method is 2.5 and final 
results went as low as 1.2, whereas the Boundary 
Tensor ran with the RTG4 only obtained 3.8. 

TABLE I.  STREAK DETECTION 
ALGORITHMS AND PLATFORMS USED DURING 
THE PROJECT. BEST CASE RESULTS OBTAINED 
SO FAR. 

Platform 
Algorithm 

CCSDS 
122.0-B-1 Boundary Tensor Differences Method 

HPDP 2 images 
in 4.31s 1 image in 0.7s N/A 

RTG4 
(VHDL) N/A 2 images in 0.2s See Tables VII - 

VIII 
ARM 
CORTEX N/A N/A 2 images in 0.8s 

Desktop 
PC in C 

2 images 
in 0.8s a 1 image in 12s b 2 images in 0.8s 

Desktop 
PC in 
Matlab 

N/A 2 images in 0.9s 2 images in 0.8s 

a. Desktop tests were performed with an Intel 
Core i3-6100 Processor clocked at 3.7 GHz. 
b. Desktop tests were performed with an Intel 
Core i5 Processor clocked at 2.5 GHz with 4 Mbytes of 
L3 cache.

The fact that the Differences Method is more sensitive 
to faint streaks made the project decide for this latter 
algorithm. 

4. FURTHER RESULTS WITH DIFFERENCES 
METHOD 

During the course of the last months, since the final 
image processing algorithm was chosen, several further 
tests were performed on it to test its boundaries and also 
those of the hardware platforms where it ran. The major 
difference to the tests performed up to now was that 
images were no longer only 2048x2048 pixels large but 
also: 668x1002 pixels and 2672x4008 pixels. Two 
different simulations were added to the results obtained 
so far: an expanded C++ simulation and a VHDL 
version of the algorithm running on an RTG4 FPGA 
from Microsemi.  

4.1.The C++ implementation 

A C++ implementation on a Windows 7 and a Linux 
environment was used to simulate the on-board chain on 
an elegant breadboard. The results can be seen in the 
following table: 

TABLE II.  EXECUTION TIMING OF THE C++ 
IMPLEMENTATION 

Platform Resolution Differences Method 

Linux 3.4 GHz
668x1002 0.112 
2048x2048 0.354 
2672x4008 1.112 

Windows 7, x86-64, 
3.4 GHz

668x1002 0.281 
2048x2048 0.331 
2672x4008 0.893 



The Difference Method running on a Desktop Computer 
clearly benefits from 8 GB of RAM and a significantly 
higher clock frequency of 3.4 GHz, a factor 11 higher 
than what can be used for the on-board processing 
platforms, the ARM Cortex R5F and the RTG4. 

4.2.The VHDL implementation 

For this simulation, an external Dual-Port SRAM as 
implemented in the VHDL design is assumed for the 
following calculations. In Table III, the necessary 
amount of clock cycles per operation when processing 
668x1002 images is analysed as well as for which steps 
one can give an exact number of clock cycles and for 
which steps the number of required cycles depends on 
the content of the image. 

TABLE III. NUMBER OF CLOCK CYCLES (4x4 
PRE-BINNING) 

Operation 668x1002 
pixels 

2048x2048 
pixels 

2672x4008 
pixels 

Storing 2,683,104 16,782,976 42,843,264 

Binning 670,672 4,194,304 10,709,376 

Star Detection 47,917 268,144 675,336 
Displ. Vector 
Callibration 4,504 4,504 10,516 

Second Binning 41,085 260,100 667,332 

Difference 40,261 258,064 664,000 
Region of Interest 
Selection 

4,565+?x
324 28,900+?x324 74,148+?x324 

Adding stars 3200 3,200 9,800 
Image 
Compression 670,672 4,194,304 10,709,376 

Total 4,165,980 25,994,496 66,357,136 

In order to run the simulation, a clock period of 10ns 
was estimated and run with Synplify Pro from 
Synopsys. The result revealed that the Difference 
Method implemented as examined earlier can run on the 
RTG4 with an estimated clock frequency of 5.3 MHz 
(theoretical maximal clock frequency: 300MHz). From 
this result it is clear that there is a bottleneck in the 
design which needs to be analysed. The dedicated 
simulations show as follows: 

TABLE IV. ESTIMATED CLOCK FREQUENCY ON 
THE SEPARATED ALGORITHM MODULES 

Algorithm Operation Estimated Clock 
Frequency [MHz] 

Storing 11.8 
Binning 125.2 

Star Detection 5.3 
Displacement Vector 97.9 

Second Binning 72.8 
Difference 23.7 

ROI Selection 61.1 
Addition of stars 139.3 

Image Compression 319.7 
Top Level Module 5.3 

These modules are all working with clock frequencies 
above what is required to comply with the timing 
constraint. For the ones that do not, it is possible let the 
synthesis result display the critical path causing the 
longest delay, to know where the design has to be 
optimized. In this case, the longest path clearly is 
caused by the complex star detection. 

Fig. 10. Bar graph comparing the clock frequency 
distribution to the required frequencies for processing a 
certain resolution in time.

For different image sizes it can be seen that the 
maximum cock frequency is always limited by some 
blocks of the algorithm. The consequence is that these 
blocks will have to be optimised or ported outside the 
FPGA. 

TABLE V. RESOURCE USAGE OF THE RTG4 
PROVIDED BY SYNPLIFY PRO. 
 Carry cells DSP 

Blocks 
LUTs 

Storing 1553 8 1888 
Binning 472 3 740 

Star 
Detection 10082 43 12228 

Displacement 
Vector 251 0 459 

Second 
Binning 2851 8 3103 

Difference 1436 6 1906 
ROI 

Selection 934 17 1194 

Addition of 
stars 324 13 407 

Image 
Compression 127 0 176 

Top Level 
Module 13852 66 18523 



Since the Differences Method only takes up a small 
percentage of the available resources of the RTG4, more 
commercial FGPAs were taken as a comparison: 
NanoXplore’s NG-Medium and NG-Large. These two 
FPGAs are a very convenient and affordable alternative 
to other FPGAs, even if they are smaller than the RTG4 
(as an example, NG-MEDIUM is comparable to a 
RTAX-2000). 

TABLE VI. RESOURCE USAGE OF THE 
NANOXPLORE NG-MEDIUM AND NG-LARGE 
PROVIDED BY NANOXPLORE’S NXP TOOL 
COMPARED TO THE RTG4 RESULTS. RESULTS 
FOR NG-LARGE STATIC TIMING ANALYSIS NOT 
SUPPORTED YET. 
 Carry cells DSP 

Blocks 
LUTs Req.  

Freq. 
[MHz] 

Max.  
Freq. 

[MHz] 
RTG4 13852 66 18523 300 5.3 

NanoXplo
re NG-

Medium 
(After 

Synthesis) 

7140/8064 
(89%) 

42/112 
(38%) 

3361/32256 
(11%) 50 16.16 

NanoXplo
re NG-

Medium 
(After 

Place & 
Route) 

7154/8064 
(89%) 

42/112 
(38%) 

3304/32256 
(11%)   50 16.16 

NanoXplo
re NG-
Large 
(after 

Synthesis) 

7140/8064 
(23%) 

42/384 
(11%) 

3304/129024 
(3%) n/a n/a 

NanoXplo
re NG-
Large 
(after 

Place & 
Route) 

7154/8064 
(23%) 

42/384 
(11%) 

3304/129024 
(3%) n/a n/a 

The following image simulates a single debris object 
moving across the scene slightly below the centre of the 
image. The exposure time of the BBI camera is set to 
0.5 s. The debris particle is revealed after performing 
the difference and appears as a bright spot which is 
highlighted by a red circle. It is found during the 
subsequent ROI selection by a simple thresholding 
operation. 

Fig. 11. VHDL result image, with zoom-in for detail 
view. 

Fig.-12. Binned images 1 and 2. 

Fig.-13. First pair of the G1 TSU 668x1002 test images 
and their intermediate results.

4.3.Direct comparison of all implementations 

Even though a direct comparison of the three different 
implementations (C, C++ and VHDL) with respect to 
their execution time is not immediately possible, a 
summarising table has been put together to give the 
reader an idea of  

TABLE VII. EXECUTION VERSION OF THE VHDL 
AND C VERSION FOR THE CONTINUOUS MODE 
Algorithm 
Operation 

VHDL [s] C [s] 

Pre-Processing 1.583 0.010 
Binning with 
Dual-Port RAM 0.791 

10.842 Binning with 
Single-Port 
RAM 

0.840 

Median 
Calculation n/a 0.349 

Star Detection 
with Dual-Port 
RAM 

0.051 

0.169 Star Detection 
with Single-Port 
RAM 

0.052 

Displacement 
Vector 0.001 0.002 

Second Binning 0.0049 0.470 
Difference 0.0049 1.002 



ROI Selection 0.005 0.003 Addition of stars 0.001 
Image 
compression 0.791 1.268 

TOTAL with 
Single-Port 
RAMS 

3.321 

14.115 TOTAL with 
Dual-Port 
RAMS 

3.371 

The Difference Method at first glance performs 
noticeably better in VHDL than it does in C for both 
modes. However, not all of the above listed steps of the 
algorithm should be looked at as results which cannot 
be improved. Especially the performance of the very 
first operations and the last ones is tightly coupled to the 
specific memory interface since during these stages the 
images all have to be fetched from and written back to 
external storage elements as they are too large to be 
stored internally. Thus, care should be taken when 
directly comparing the timing data for the image pre-
processing, the binning and the image compression in 
particular since the SD card would certainly be replaced 
by a faster memory type if the ARM processor is chosen 
for the on-board processing platform. 

TABLE VIII. EXECUTION VERSION OF THE 
VHDL, C AND C++ VERSION FOR THE ONE-SHOT 
MODE 
Algorithm 
Operation 

VHDL [s] C [s] C++ [s] 

Pre-Processing 3.167 0.0019 n/a 
Binning with 
Dual-Port RAM 0.791 

21.681 n/a Binning with 
Single-Port 
RAM 

0.840 

Median 
Calculation n/a 0.698 n/a 

Star Detection 
with Dual-Port 
RAM 

0.051 

0.338 n/a Star Detection 
with Single-Port 
RAM 

0.052 

Displacement 
Vector 0.001 0.002 n/a 

Second Binning 0.049 0.470 n/a 
Difference 0.049 1.002 n/a 
ROI Selection 0.005 0.005 n/a Addition of stars 0.001 
Image 
compression 0.791 2.627 n/a 

TOTAL with 
Single-Port 4,905 26.842 0.354 

RAMS 
TOTAL with 
Dual-Port 
RAMS 

4,905 

The DM in VHDL replaces the median calculation with 
an average calculation and had to deal with several 
issues during the design of the star detection despite 
finally being faster than the C implementation. During 
the displacement vector calculation, both images then 
do not rely on the external memory anymore and the 
evaluation becomes a lot clearer. The Difference 
Method in VHDL is optimized not to waste a single 
clock cycle when processing the images during the 
second binning and the difference. Both steps of the 
Difference Method now turn out to perform better on 
the FPGA. Once it is about composing the result image 
out of regions of interest and reference stars, the ARM 
takes the lead. 

It is faster for both operations since in C an index vector 
for each row of the image is calculated instead of 
explicitly copying image content from one RAM to 
another one as it is done in VHDL. Then finally, for the 
image compression, both versions need to communicate 
with the external storage again. Here, the VHDL version 
one more time benefits from using fast SRAM 
components. 

A noticeable drawback of the C implementation is that 
it currently only uses one of both cores of the ARM 
Cortex R5F. As a result, when used in One-Shot Mode, 
the ARM needs to apply the image pre-processing, the 
binning, the median calculation and the star detection to 
both images before it can continue with the 
displacement vector calculation since no previous 
results are available yet. Especially the binning, where 
large amounts of data have to be transferred over a slow 
memory interface, dramatically slows down the ARM’s 
performance. Here, the VHDL version benefits from 
having all execution units duplicated so that every 
operation can be applied to both images at once, 
significantly improving the result of the One-Shot 
Mode. 

The C++ version in direct comparison performs the 
algorithm significantly faster than both candidates for 
the on-board processing platform. With a clock 
frequency of 3.4 GHz the desktop version is clocked 11 
times higher than the ARM processor and 651 times 
higher than the FPGA. In addition, the C++ version can 
make use of an optimized DRAM access benefitting 
from DDR protocols. With 8 GB of RAM, it also does 
not suffer from insufficient DRAM resources like the 
ARM-based implementation, forcing it to use 
alternative, slower technologies, and can easily store 
many hundred input images at once. 



5. CONCLUSION 

In this article, both the growing problematic of space 
debris and the aim of the ESA GSTP activity “Optical 
In-Situ Monitor” have been presented. Several image 
processing algorithms (CCSDS 122.0-B-1, Boundary 
Tensor and Differences Method) were described, 
implemented and results were presented. 

In terms of performances, Matlab simulations 
performed by AIUB show that the SNR obtained in 
resulting images processed by the Differences Method 
is more sensitive than the Boundary Tensor; hence, the 
Differences Method was selected due to its 
sensitiveness to faint streaks with very low SNR. All 
efforts were focussed on this algorithm and the need to 
test it with several hardware architectures was 
identified. 

Also, both architectures currently considered for the 
image processing (ARM Cortex R5F and RTG4 FPGA) 
and the algorithms considered for data reduction 
(Boundary Tensor and the Differences Method) have 
been tested. The RTG4 FPGA implementation of the 
Boundary Tensor has results which match those attained 
with the HPDP; and the ARM Cortex also offers 
interesting results with the differences method. As an 
alternative to the RTG4, both the NG-MEDIUM and the 
NG-LARGE FPGAs from NanoXplore were also 
successfully tested, even if the design needs some 
corrections. 

After extensive testing, the conclusion of the project is 
that the ARM Cortex R5F is a promising candidate to 
implement the Differences Method algorithm for a real 
mission. The expectation was that Microsemi’s RTG4 
FPGA would also perform well within the requirements 
with the Differences Method. However, due to its low 
cost and robustness, the final recommendation [17] on 
what platform shall be selected is the ARM Cortex R5F 
provided with an extensive RAM memory block to 
ensure fast read/write access times. 
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