
THE USE OF DIFFERENT ARCHITECTURES AND STREAK OBSERVATIONS
ALGORITHMS TO DETECT SPACE DEBRIS

Gerard Vives Vallduriola(1), Tim Helfers(2), Franz Biersack(3), Arthur Scharf(4), Diego Andrés Suárez Trujillo(5),
Damien Daens(6), Steffen Linssen(7), Dr. Jens Utzmann(8), Jean-Noel Pittet(9), Alessandro Vananti(10)

(1) Airbus Defence and Space GmbH. Taufkirchen, Germany. Email: gerard.vives@airbus.com
(2) Airbus Defence and Space GmbH. Taufkirchen, Germany. Email: tim.helfers@airbus.com

(3) Airbus Defence and Space GmbH. Taufkirchen, Germany. Email: franz.biersack@airbus.com
(4) Airbus Defence and Space GmbH. Taufkirchen, Germany. Email: arthur.scharf@airbus.com
(5) Airbus Defence and Space GmbH. Taufkirchen, Germany. Email: diego.suarez@airbus.com

(6) Airbus Defence and Space GmbH. Taufkirchen, Germany. Email: damien.daens@airbus.com
(7) Airbus Defence and Space GmbH. Taufkirchen, Germany. Email: steffen.linssen@airbus.com
(8) Airbus Defence and Space GmbH: Immenstaad, Germany. Email: jens.utzmann@airbus.com

(9) Astronomical Institute of the University of Bern (AIUB), Bern, Switzerland. Email: jean-noel.pittet@esa.int
(10) Astronomical Institute of the University of Bern (AIUB), Bern, Switzerland. Email:

alessandro.vananti@aiub.unibe.ch

ABSTRACT

Modern society depends heavily on satellite
infrastructure. However, Space becomes more and more
congested by space debris from over 50 years of space
activities. This growing threat in orbit must be
monitored. The aim of the ESA GSTP activity „Optical
In-Situ Monitor“ is to design and test a breadboard of a
space-based space debris camera and to develop and test
its end-to-end processing chain.

The on-board processing functions will focus on the
payload image processing in order to reduce the data
volume (image segmentation for streak detection).

The suitable technologies for the processing units will
be described: the HPDP, an ARM-Cortex R5F processor
and Microsemi’s RTG4 FPGA. For image processing,
several algorithms were tested extensively: the CCSDS
122.0-B-1, the Boundary Tensor and the Differences
Method.

This paper shows the results of the project and gives an
overview of which combination of processor-algorithm
yields the most promising results for our mission.

1. INTRODUCTION

Space becomes more and more congested by space
debris from over 50 years of space activities [1][2]. This
growing threat in orbit must be monitored in order to
sustain safe access and operations of the space
infrastructure [3][4][5].

The aim of the ESA GSTP activity „Optical In-Situ
Monitor“ is to design and test a breadboard of a space-
based space debris camera and to develop and test its
end-to-end processing chain. The corresponding future
flight model shall be used for the detection of small-

sized (down to 1 mm in diameter) space debris in LEO
as well as larger objects in GEO. It is intended to be
flown on a platform in sun-synchronous orbit near the
terminator plane. The breadboard system will constitute
a unique facility to perform realistic tests of the end-to-
end processing chain for debris observations within a
controlled environment.

The on-board processing functions will focus on the
payload image processing in order to reduce the data
volume. The suitable technologies for the processing
units are: the HPDP [6], an ARM-Cortex R5F processor
[7] and Microsemi’s RTG4 FPGA [8].

For image compression, the CCSDS 122.0-B-1 [9]
algorithm was initially tested. For on-board object
detection, both the Boundary Tensor [10][11][12] and
the Differences Method [13] were tested extensively.

2. CANDIDATE PROCESSORS

The on-board processing functions will focus on the
payload image processing in order to reduce the data
volume (image segmentation for streak detection).
These on-board image processing requirements are
challenging in terms of on-board processing
performance. First assessments of the on-board
functionality show an input data rate of ca. 100
Megabits per second (Mbps) and a required integer
processing rate of at least 5 Giga-operations per second
(GOPS) with at least 16 bit accuracy. Baseline for this
assessment is a frame rate of one 2000 pixels × 2000
pixels image per second and a feature detection
algorithm for data reduction. A buffer memory of 128
Megabytes (MB) must be envisaged for intermediate
storage of the image during the processing steps. Power
Consumption for the processing part should not exceed
20 Watts.

The suitable technologies for the processing units can be
summarised into three different categories: General
Purpose Processors (GPP)/Digital Signal Processors
(DSP), Field Programmable Gate Arrays / Application
Specific Integrated Circuits (FPGAs/ASICs) and
Specialised Processing Units (SPU). GPPs, and also in
part DSPs, provide the easiest development
environment and highest developer productivity but the
throughput rate can be rather low compared to an FPGA
or some Specialised Processing Units and the power
consumption relatively high. For IN-SITU, an ARM-
Cortex R5F processor was tested. FPGAs are mass
produced devices containing numerous look-up tables
and other elements interlinked by configurable
interconnects. This approach is less efficient than ASICs
since there will inevitably be unused elements of the
FPGA. However it offers greatly enhanced flexibility. It
combines multiple cores with different characteristics to
allow efficient mapping of algorithms with high
processing demand. For IN-SITU, Microsemi’s RTG4
FPGA was tested. Finally, most SPUs are essentially an
array of processing elements with efficient access to
memory. The increased specialization makes them more
efficient but more difficult to program. For IN-SITU,
the HPDP falls into this latter category.

2.1.High/Performance Data Processors

The HPDP, based on the XPP-III Core by PACT XPP
Technologies is a radiation hardened, reprogrammable
array processor, a 16 bit architecture designed in 65nm
STM C65SPACE technology [15]. The main
component of the XPP-III Core represents a dataflow
array, consisting of two-dimensionally arranged
Processing Array Elements (PAEs), connected by a
communication infrastructure that can be reconfigured
at runtime, as well as the operations performed by each
PAE.

The XPP core architecture is modular in nature and
consists of a number of reconfigurable Processing Array
Element (PAE) connected by a reconfigurable data and
event network where the data path can go from top to
bottom or vice-versa. Two types of PAEs exist: an
Arithmetic-Logic Unit (ALU) PAE and a Random
Access Memory PAE. The vertical data in the
architecture and event routing channels are always
contained within a PAE, in the form of Forward
Registers (FREGs) that route data vertically from top to
bottom, and Backward Registers (BREGs) that route
data vertically from bottom to top.

The array network is enhanced by Very Long
Instruction Word (VLIW-type) processors called
Function-PAEs (FNCs), which are used for controlling
and configuring the network and execution of control
type processing.

2.2.Microsemi RTG4 FPGA

Microsemi's RTG4 device is the fourth generation of
flash based FPGAs, designed for applications in space.
The number of logic gates, registers and specialised
multiplier blocks is significantly higher than in the
current generation of FPGAs. Therefore the device is
announced to be suitable for signal processing tasks in
satellite applications. Airbus Defence and Space GmbH
in Ottobrunn has evaluated this device using an
evaluation board from Microsemi by porting one of
their Global Navigation Satellite Services (GNSS)
applications onto the technology.

2.3.ARM Cortex R5F

The ARM Cortex R5F was another evaluated option and
is a Reduced Instruction Set Computer (RISC) based
microprocessor design featuring a Dual-Core Central
Processing Unit (CPU) that is able to run in a Lock-Step
configuration. As this allows to run the CPU in a
redundant mode detecting errors during CPU
operations, it is used in safety-critical applications as
automotive braking systems (ABS), electric power
steering (EPS), railway communications but also in
aerospace and avionics. It implements the ARMv7-R
architecture and is able to use the Thumb-2 instruction
set (a slightly reduced ARM instruction set where both
16 and 32 bit instructions can be used).

As for processing performance, the R5F provides
dynamic branch prediction using a global history buffer,
which allows the CPU to guess or predict which branch
will be taken in a code condition. Such a branch
prediction is in particular useful with the available 8
stage pipeline. This is done by the PreFetch Unit (PFU)
that can fetch instructions (also on a speculative basis)
and data via the Data Processing Unit (DPU) to increase
the performance of the instruction stream on the R5F.

The processor also has an L1 (level 1) memory system -
essentially a cache very close to the CPU - and can
handle up to 64KB for both instruction and data
(Harvard architecture) and is interconnected with a
Memory Protection Unit (MPU) and Tightly Coupled
Memory (TCM) areas. Featuring up to 12 distinct
memory regions, the MPU can configure each one with
separate attributes, as e.g. shared memory, cached
(write-through and write-back) and non-cached regions.
Also access permissions can be set separately. Each
cache can have an enabled TCM (dedicated fast RAM)
with an optional error detection and correction
mechanism to protect the stored data.

If the TCM and L1 cannot satisfy a data or instruction
fetch, the request is forwarded to the L2 (level 2) system
via the AXI master interface. It can then handle the

request via an AXI slave interface, three peripheral
interfaces (AMBA AXI and optional AHB access) to
access peripherals or the Accelerator Coherency Port
(ACP) interface, in case the multi-core configuration is
used.

The above described R5F design is implemented in the
Texas Instruments TMS570LC4357 microprocessor,
which is later used for the actual implementation of the
Differences Method. This CPU has various dedicated
peripherals that are connected to the AHB/AXI
interfaces, amongst others an external memory interface
(EMIF), a Peripheral Interconnect Subsystem featuring
various modules as for example DMA, Ethernet Mac
(EMAC) and multiple communication modules as SPI,
I2C, CAN, etc.

The TMS570LC4357 is built with 4 MB on-chip flash
memory with error-correcting code (ECC), 512 KB of
internal static random access memory (SRAM) with
optional Error Correcting Code (ECC) and is running at
300 MHz, providing up to 1.66 Dhrystone MIPS per
MHz when used with an 8-stage pipeline.

2.4.NANOXPLORE NG-MEDIUM and NG-
LARGE

NanoXplore is a French start-up focused on designing
high-performance FPGAs, also space qualified, and
since both design and production are done in Europe,
their products are ITAR-free. This detail, added to a
competitive price, make NanoXplore’s NG-Medium and
NG-Large very convenient and interesting alternatives
to current ITAR-sensitive FPGAs.

The NG-MEDIUM was designed, verified and
manufactured using 65nm CMOS technology from
STMicroelectronics, it is radiation hard and is delivered
with a set of self-developed tools used for design,
synthesis, Place&Route. The NG-Medium has a
capacity of 550.000 ASIC gates, 32256 registers, 112
embedded DSPs, 1 SpaceWire link (400Mbps) and 24
clocks.

The NG-LARGE was designed, verified and
manufactured using 65nm CMOS technology from
STMicroelectronics, it has 1900000 ASIC gates, 129024
registers, 384 embedded DSPs 1 SpaceWire link
(400Mbps) and 32 clocks. Embedded in it there is a rad-
hard ARM Cortex-R5x.

3. CANDIDATE ALGORITHMS

For image compression purposes, the CCSDS 122.0-B-1
algorithm was tested while for on-board object
detection, both the Boundary Tensor and the
Differences Method were tested extensively.

3.1.CCSDS 122.0-B-1

The CCSDS 122.0-B-1 is an image compression
standard published in 2005 by the Consultative
Committee for Space Data Systems (CCSDS), which
also released other compression standards for arbitrary
and hyperspectral data. It is a recommendation for
compression of two-dimensional grayscale image data
and was specifically designed for on-board processing
of payload data on spacecrafts. The aim of the
recommendation is to provide an image compression
standard that can be implemented despite the limited
computational power and memory [9][16].

Two different modes for lossless and lossy compression
are supported. Lossless compression is achieved by
quantization and entropy coding, for lossy compression
in addition image information is removed, depending on
compression factors and beginning with the least
important information.

The compression is based on a Discrete Wavelet
Transform (DWT). The resulting sub-bands of the
original image signal are then compressed by a Bit
Plane Encoder (BPE), as seen in Fig. 1.

Fig. 1. Functional parts of the CCSDS 122.0-B-1
recommended standard (CCSDS, 2005)-.

3.2.Boundary Tensor

The boundary tensor [11] is a symmetric and positive
semi definite tensor with non-negative eigenvalues λ1
and λ2 and with the positive semi-definite symmetric
tensor T of order 2.

These eigenvalues represent the variations in the pixel
intensity in the direction of their orthogonal
eigenvectors. In other words, the boundary tensor
analyses the area around the processed pixel, and
provides a local base showing the direction of the
intensity variation, and the strength of the variation. As
such, if λ1 and λ2 are both null it means that the area of
the image has pixels of constant intensity. If λ1 is strictly
positive and λ2 is null (λ1 ≥ λ2) by definition) then the
pixel intensity is only changing in the direction given by
the eigenvector associated to λ1: an edge is detected. If
λ1 and λ2 are both not null, it means that pixel intensity
changes in all the directions in the area of the image: a
corner is detected.

To build the boundary tensor, a set of separable polar
filters is applied to the image which is to be analysed.

These filters are defined as the product of an angular
and a radial function in order to optimize its frequency
behaviour. It will also help getting the invariance to
rotations. The first step in applying the filters to the
image is done by convoluting the image with each filter
row-like, taking into account the intensity of each pixel
and the coefficients of the filter.

In practice, the filter coefficients are taken equal to zero
outside a radius r. r = 4 will be the used value, as it
represents a good compromise between complexity and
precision.

The result of the row-like convolution is then again
convoluted with the filters, but this time column-like.
For the algorithm, the kernels were chosen equal to
those taken by Diego Andrés Suárez Trujillo in his
implementation of the algorithm on a HPDP [12].

After having simulated several algorithms on the HPDP
(compression, boundary tensor and several
communications algorithms) Airbus can point out which
algorithms are most appropriate for the chosen
architecture. This architecture, commonly used in space
applications, is especially performant with loops, as
these are processed in parallel. However, sequential
programs are executed slowly. In contrast, a typical PC-
architecture (i.e. programmed in C) is slow for loops, as
they cannot be executed in parallel, but very fast for
sequential execution.

There is a hardware limitation that for the HPDP data
types should be preferably 16-bit fixed-point arithmetic,
which can be interpreted as using “short integers”
instead of “reals” in C. For the on-board image
processing S/W module, this fact must be considered
when choosing the corresponding algorithms for feature
detection and filtering. Floating point could be emulated
on on-board H/W, but with high degradation of
performance.

The boundary tensor can be split in the odd energy
which accumulates in the step edges and in the even
energy which accumulates in the roof edges.
The final step of the algorithm is to determine if a pixel
corresponds to a resident space object (RSO) or not. In
order to do so, it is necessary to extract from the
boundary tensor a measure of the probability of the
pixel being an edge. The tensor trace is actually the
energy contained in the edges: it is the sum of the
eigenvalues of the tensor.

3.3.Differences Method

The basic idea of this final algorithm is to compare two
frames to detect the changing features. The registration
(alignment and scale transformations) between the two
frames is critical to perform a comparison well enough.

Usual image treatment tools are used in post-processing
manner and allow transformation at a sub pixel level.
The following assumptions are made:

(1) Alignment at the pixel level (integer displacement
vectors) with an afterwards binning.
(2) Rotation and scale transformations can be
approximated as a number of displacement vectors on
an equal number of sub-frames.
(3) Selection of the features and their surrounding can
be made on the base of the binned pixels.
For the complete on-board segmentation the following
steps are suggested.
(1) Remove the saturated stars.
(2) Find the brightest non-saturated stars.
(3) Divide the whole frame into 5 x 5 pixel sub-frames
and estimate the displacement vector for each of them.
(4) Execute a binning on two frames taking into account
the displacement vectors.
(5) Subtract one frame from the other.
(6) Pixels with values over (under) a threshold are
selected as potential streak of the frames being
processed.

3.4.Algorithm Trade-Off

The On-Board Processing Pipeline (OBPP) was
developed within this project by the Astronomical
Institute of the University of Bern, Switzerland. The
main objectives of the OBPP are the autonomous on-
board data reduction, preliminary image segmentation
and object detection. These steps are critical and lead to
an effective on-board processing pipeline optimizing the
downlink bandwidth usage.

3.4.1. Properties of the Boundary Tensor

In terms of performances, Matlab simulations
performed by AIUB show that the SNR obtained in
resulting images processed by the Boundary Tensor
which was implemented with the RTG4 yields 3.8.

Concerning the time needed to process one single image
using the Boundary Tensor, the HPDP implementation
needs over 0.734 s, while the RTG4 only needs 0.06 s,
which is much faster than the requirement of 1 s for
processing 2 images for the IN-SITU project. The
difference in timing between the two implementations
can be explained by the fact the FPGA can process all
the convolutions at the same time, as well as calculating
the output, without needing to write any data in an
external memory, unlike the HPDP. The resulting
images, as seen in Fig. 3 to Fig. 5 (Fig. 2 was the input,
an original image obtained with a telescope from
AIUB), show that the boundary tensor algorithm can
also detect streaks of different intensity.

Some small differences can be observed between the
results of the implementation on both architectures
(HPDP and RTG4). After an analysis of the dataflow of
both architectures, it has been noted that the one on the
HPDP had to scale up the kernel coefficients with a
multiplying factor in order to make them bigger than 1.
The RTG4 architecture uses fractional length to deal
with this problem. The kernels used by the HPDP
simulation must make the architecture a more sensitive
one, as it seems to detect more debris, but also gets
more noise. As a conclusion, both hardware
architectures are comparable in terms of output results;
the only difference is that the HPDP version changes the
kernel coefficients and the threshold value while scaling
them up, which takes processing time.

3.4.2. Properties of the Differences
Method

The sensitivity of the Differences Method was tested by
AIUB. Matlab simulations show that the SNR obtained
in resulting images processed by the Differences
Method is 2.5 and final results show that this algorithm
can detect faint debris streaks down to a peak SNR of
1.2.

Only a part of an image was selected in order to get an
input 2048x2048-pixel frame, as required (this image is
visible in Fig. 6). The Matlab model was launched, and
its output signal was used to build the binary output of
the processed picture, visible on Fig. 7. Similarly with
input image in Fig. 8, which was synthetically
generated, its output (Fig. 9) also produces faint streaks.
A zoom into Fig. 6 shows that some noise is detected as
debris, like the single dot at the right of Fig. 5, which
does not seem to be a streak, but noise.
The implementation with the ARM Cortex processor
shows that timing constraints can be met: 2 images can
be processed in less than 0.8 seconds. However, some
optimisation is still needed on this platform as not all
images yield this result: too many stars or streaks may
increase the processing time.

Fig. 2. Input original picture obtained by AIUB with a
telescope during a night observation. This is the input

image used to test the Boundary Tensor implementation
with the RTG4.

Fig. 3. Result obtained by the RTG4 boundary tensor
implementation where the input was Fig. 2.

Fig. 4. Zoom into the input picture shown in Fig. 2.
Even though intensity of streaks varies, in the original
image, the Boundary Tensor algorithm can still detect

them

Fig. 5. Zoom into Fig. 8, input picture is Fig. 2. The
dot to the right of the image is noise.

Fig. 6. Only part of the original synthetic image was
taken in order to get a 2048 pixel by 2048 pixel frame.

SNR of streaks are 1.5 and 4 in this frame.

Fig. 7. Output of the differences method where input
was Fig. 6. Stars in the background have been reduced
or completely eliminated; only the area around streaks

and objects of interest is visible.

Fig. 8. Original frame synthetically generated by
AIUB. SNR of streaks are 1.2 and 6 in this frame.

Fig. 9. Output of the differences method where input
was Fig. 4. It is noteworthy that the algorithm can

detect very faint streaks and objects.

3.4.3. Algorithm Trade-Off Conclusion

As can be seen from Fig. 2 through 9 and Table 1, the
Differences Method algorithm offered valid results
within the timing requirements of 2 images / second. In
terms of sensitivity, Matlab simulations performed by
AIUB show that the SNR obtained in resulting images
processed by the Differences Method is 2.5 and final
results went as low as 1.2, whereas the Boundary
Tensor ran with the RTG4 only obtained 3.8.

TABLE I. STREAK DETECTION
ALGORITHMS AND PLATFORMS USED DURING
THE PROJECT. BEST CASE RESULTS OBTAINED
SO FAR.

Platform
Algorithm

CCSDS
122.0-B-1 Boundary Tensor Differences Method

HPDP 2 images
in 4.31s 1 image in 0.7s N/A

RTG4
(VHDL) N/A 2 images in 0.2s See Tables VII -

VIII
ARM
CORTEX N/A N/A 2 images in 0.8s

Desktop
PC in C

2 images
in 0.8s a 1 image in 12s b 2 images in 0.8s

Desktop
PC in
Matlab

N/A 2 images in 0.9s 2 images in 0.8s

a. Desktop tests were performed with an Intel
Core i3-6100 Processor clocked at 3.7 GHz.
b. Desktop tests were performed with an Intel
Core i5 Processor clocked at 2.5 GHz with 4 Mbytes of
L3 cache.

The fact that the Differences Method is more sensitive
to faint streaks made the project decide for this latter
algorithm.

4. FURTHER RESULTS WITH DIFFERENCES
METHOD

During the course of the last months, since the final
image processing algorithm was chosen, several further
tests were performed on it to test its boundaries and also
those of the hardware platforms where it ran. The major
difference to the tests performed up to now was that
images were no longer only 2048x2048 pixels large but
also: 668x1002 pixels and 2672x4008 pixels. Two
different simulations were added to the results obtained
so far: an expanded C++ simulation and a VHDL
version of the algorithm running on an RTG4 FPGA
from Microsemi.

4.1.The C++ implementation

A C++ implementation on a Windows 7 and a Linux
environment was used to simulate the on-board chain on
an elegant breadboard. The results can be seen in the
following table:

TABLE II. EXECUTION TIMING OF THE C++
IMPLEMENTATION

Platform Resolution Differences Method

Linux 3.4 GHz
668x1002 0.112
2048x2048 0.354
2672x4008 1.112

Windows 7, x86-64,
3.4 GHz

668x1002 0.281
2048x2048 0.331
2672x4008 0.893

The Difference Method running on a Desktop Computer
clearly benefits from 8 GB of RAM and a significantly
higher clock frequency of 3.4 GHz, a factor 11 higher
than what can be used for the on-board processing
platforms, the ARM Cortex R5F and the RTG4.

4.2.The VHDL implementation

For this simulation, an external Dual-Port SRAM as
implemented in the VHDL design is assumed for the
following calculations. In Table III, the necessary
amount of clock cycles per operation when processing
668x1002 images is analysed as well as for which steps
one can give an exact number of clock cycles and for
which steps the number of required cycles depends on
the content of the image.

TABLE III. NUMBER OF CLOCK CYCLES (4x4
PRE-BINNING)

Operation 668x1002
pixels

2048x2048
pixels

2672x4008
pixels

Storing 2,683,104 16,782,976 42,843,264

Binning 670,672 4,194,304 10,709,376

Star Detection 47,917 268,144 675,336
Displ. Vector
Callibration 4,504 4,504 10,516

Second Binning 41,085 260,100 667,332

Difference 40,261 258,064 664,000
Region of Interest
Selection

4,565+?x
324 28,900+?x324 74,148+?x324

Adding stars 3200 3,200 9,800
Image
Compression 670,672 4,194,304 10,709,376

Total 4,165,980 25,994,496 66,357,136

In order to run the simulation, a clock period of 10ns
was estimated and run with Synplify Pro from
Synopsys. The result revealed that the Difference
Method implemented as examined earlier can run on the
RTG4 with an estimated clock frequency of 5.3 MHz
(theoretical maximal clock frequency: 300MHz). From
this result it is clear that there is a bottleneck in the
design which needs to be analysed. The dedicated
simulations show as follows:

TABLE IV. ESTIMATED CLOCK FREQUENCY ON
THE SEPARATED ALGORITHM MODULES

Algorithm Operation Estimated Clock
Frequency [MHz]

Storing 11.8
Binning 125.2

Star Detection 5.3
Displacement Vector 97.9

Second Binning 72.8
Difference 23.7

ROI Selection 61.1
Addition of stars 139.3

Image Compression 319.7
Top Level Module 5.3

These modules are all working with clock frequencies
above what is required to comply with the timing
constraint. For the ones that do not, it is possible let the
synthesis result display the critical path causing the
longest delay, to know where the design has to be
optimized. In this case, the longest path clearly is
caused by the complex star detection.

Fig. 10. Bar graph comparing the clock frequency
distribution to the required frequencies for processing a
certain resolution in time.

For different image sizes it can be seen that the
maximum cock frequency is always limited by some
blocks of the algorithm. The consequence is that these
blocks will have to be optimised or ported outside the
FPGA.

TABLE V. RESOURCE USAGE OF THE RTG4
PROVIDED BY SYNPLIFY PRO.
 Carry cells DSP

Blocks
LUTs

Storing 1553 8 1888
Binning 472 3 740

Star
Detection 10082 43 12228

Displacement
Vector 251 0 459

Second
Binning 2851 8 3103

Difference 1436 6 1906
ROI

Selection 934 17 1194

Addition of
stars 324 13 407

Image
Compression 127 0 176

Top Level
Module 13852 66 18523

Since the Differences Method only takes up a small
percentage of the available resources of the RTG4, more
commercial FGPAs were taken as a comparison:
NanoXplore’s NG-Medium and NG-Large. These two
FPGAs are a very convenient and affordable alternative
to other FPGAs, even if they are smaller than the RTG4
(as an example, NG-MEDIUM is comparable to a
RTAX-2000).

TABLE VI. RESOURCE USAGE OF THE
NANOXPLORE NG-MEDIUM AND NG-LARGE
PROVIDED BY NANOXPLORE’S NXP TOOL
COMPARED TO THE RTG4 RESULTS. RESULTS
FOR NG-LARGE STATIC TIMING ANALYSIS NOT
SUPPORTED YET.
 Carry cells DSP

Blocks
LUTs Req.

Freq.
[MHz]

Max.
Freq.

[MHz]
RTG4 13852 66 18523 300 5.3

NanoXplo
re NG-

Medium
(After

Synthesis)

7140/8064
(89%)

42/112
(38%)

3361/32256
(11%) 50 16.16

NanoXplo
re NG-

Medium
(After

Place &
Route)

7154/8064
(89%)

42/112
(38%)

3304/32256
(11%) 50 16.16

NanoXplo
re NG-
Large
(after

Synthesis)

7140/8064
(23%)

42/384
(11%)

3304/129024
(3%) n/a n/a

NanoXplo
re NG-
Large
(after

Place &
Route)

7154/8064
(23%)

42/384
(11%)

3304/129024
(3%) n/a n/a

The following image simulates a single debris object
moving across the scene slightly below the centre of the
image. The exposure time of the BBI camera is set to
0.5 s. The debris particle is revealed after performing
the difference and appears as a bright spot which is
highlighted by a red circle. It is found during the
subsequent ROI selection by a simple thresholding
operation.

Fig. 11. VHDL result image, with zoom-in for detail
view.

Fig.-12. Binned images 1 and 2.

Fig.-13. First pair of the G1 TSU 668x1002 test images
and their intermediate results.

4.3.Direct comparison of all implementations

Even though a direct comparison of the three different
implementations (C, C++ and VHDL) with respect to
their execution time is not immediately possible, a
summarising table has been put together to give the
reader an idea of

TABLE VII. EXECUTION VERSION OF THE VHDL
AND C VERSION FOR THE CONTINUOUS MODE
Algorithm
Operation

VHDL [s] C [s]

Pre-Processing 1.583 0.010
Binning with
Dual-Port RAM 0.791

10.842 Binning with
Single-Port
RAM

0.840

Median
Calculation n/a 0.349

Star Detection
with Dual-Port
RAM

0.051

0.169 Star Detection
with Single-Port
RAM

0.052

Displacement
Vector 0.001 0.002

Second Binning 0.0049 0.470
Difference 0.0049 1.002

ROI Selection 0.005 0.003 Addition of stars 0.001
Image
compression 0.791 1.268

TOTAL with
Single-Port
RAMS

3.321

14.115 TOTAL with
Dual-Port
RAMS

3.371

The Difference Method at first glance performs
noticeably better in VHDL than it does in C for both
modes. However, not all of the above listed steps of the
algorithm should be looked at as results which cannot
be improved. Especially the performance of the very
first operations and the last ones is tightly coupled to the
specific memory interface since during these stages the
images all have to be fetched from and written back to
external storage elements as they are too large to be
stored internally. Thus, care should be taken when
directly comparing the timing data for the image pre-
processing, the binning and the image compression in
particular since the SD card would certainly be replaced
by a faster memory type if the ARM processor is chosen
for the on-board processing platform.

TABLE VIII. EXECUTION VERSION OF THE
VHDL, C AND C++ VERSION FOR THE ONE-SHOT
MODE
Algorithm
Operation

VHDL [s] C [s] C++ [s]

Pre-Processing 3.167 0.0019 n/a
Binning with
Dual-Port RAM 0.791

21.681 n/a Binning with
Single-Port
RAM

0.840

Median
Calculation n/a 0.698 n/a

Star Detection
with Dual-Port
RAM

0.051

0.338 n/a Star Detection
with Single-Port
RAM

0.052

Displacement
Vector 0.001 0.002 n/a

Second Binning 0.049 0.470 n/a
Difference 0.049 1.002 n/a
ROI Selection 0.005 0.005 n/a Addition of stars 0.001
Image
compression 0.791 2.627 n/a

TOTAL with
Single-Port 4,905 26.842 0.354

RAMS
TOTAL with
Dual-Port
RAMS

4,905

The DM in VHDL replaces the median calculation with
an average calculation and had to deal with several
issues during the design of the star detection despite
finally being faster than the C implementation. During
the displacement vector calculation, both images then
do not rely on the external memory anymore and the
evaluation becomes a lot clearer. The Difference
Method in VHDL is optimized not to waste a single
clock cycle when processing the images during the
second binning and the difference. Both steps of the
Difference Method now turn out to perform better on
the FPGA. Once it is about composing the result image
out of regions of interest and reference stars, the ARM
takes the lead.

It is faster for both operations since in C an index vector
for each row of the image is calculated instead of
explicitly copying image content from one RAM to
another one as it is done in VHDL. Then finally, for the
image compression, both versions need to communicate
with the external storage again. Here, the VHDL version
one more time benefits from using fast SRAM
components.

A noticeable drawback of the C implementation is that
it currently only uses one of both cores of the ARM
Cortex R5F. As a result, when used in One-Shot Mode,
the ARM needs to apply the image pre-processing, the
binning, the median calculation and the star detection to
both images before it can continue with the
displacement vector calculation since no previous
results are available yet. Especially the binning, where
large amounts of data have to be transferred over a slow
memory interface, dramatically slows down the ARM’s
performance. Here, the VHDL version benefits from
having all execution units duplicated so that every
operation can be applied to both images at once,
significantly improving the result of the One-Shot
Mode.

The C++ version in direct comparison performs the
algorithm significantly faster than both candidates for
the on-board processing platform. With a clock
frequency of 3.4 GHz the desktop version is clocked 11
times higher than the ARM processor and 651 times
higher than the FPGA. In addition, the C++ version can
make use of an optimized DRAM access benefitting
from DDR protocols. With 8 GB of RAM, it also does
not suffer from insufficient DRAM resources like the
ARM-based implementation, forcing it to use
alternative, slower technologies, and can easily store
many hundred input images at once.

5. CONCLUSION

In this article, both the growing problematic of space
debris and the aim of the ESA GSTP activity “Optical
In-Situ Monitor” have been presented. Several image
processing algorithms (CCSDS 122.0-B-1, Boundary
Tensor and Differences Method) were described,
implemented and results were presented.

In terms of performances, Matlab simulations
performed by AIUB show that the SNR obtained in
resulting images processed by the Differences Method
is more sensitive than the Boundary Tensor; hence, the
Differences Method was selected due to its
sensitiveness to faint streaks with very low SNR. All
efforts were focussed on this algorithm and the need to
test it with several hardware architectures was
identified.

Also, both architectures currently considered for the
image processing (ARM Cortex R5F and RTG4 FPGA)
and the algorithms considered for data reduction
(Boundary Tensor and the Differences Method) have
been tested. The RTG4 FPGA implementation of the
Boundary Tensor has results which match those attained
with the HPDP; and the ARM Cortex also offers
interesting results with the differences method. As an
alternative to the RTG4, both the NG-MEDIUM and the
NG-LARGE FPGAs from NanoXplore were also
successfully tested, even if the design needs some
corrections.

After extensive testing, the conclusion of the project is
that the ARM Cortex R5F is a promising candidate to
implement the Differences Method algorithm for a real
mission. The expectation was that Microsemi’s RTG4
FPGA would also perform well within the requirements
with the Differences Method. However, due to its low
cost and robustness, the final recommendation [17] on
what platform shall be selected is the ARM Cortex R5F
provided with an extensive RAM memory block to
ensure fast read/write access times.

6. REFERENCES
[1] Klinkrad, H. 2006. “Space Debris: Models and Risk Analysis”.

Springer-Verlag Berlin, 1st Ed.
[2] ESA – Space Debris. 2017. “Space Debris by the numbers”.

URL:
http://www.esa.int/Our_Activities/Operations/Space_Debris/Spa
ce_debris_by_the_numbers

[3] ESA Space Situational Awareness Group. 2012. “Space Station
Manoeuvres to Avoid Space Debris”. URL:
http://www.esa.int/Our_Activities/Operations/Space_Situational
_Awareness/Space_Station_manoeuvres_to_avoid_space_debris

[4] Atkinson, N. 2012. “ISS will do maneuver Friday to avoid
collision with satellite debris”. Universe Today. URL:
https://www.universetoday.com/92571/iss-will-do-manuever-
friday-to-avoid-collision-with-satellite-debris/

[5] Hutchinson, L. 2013. “How NASA steers the International Space
Station around space junk”. Ars TECHNICA. URL:
https://arstechnica.com/science/2013/07/how-nasa-steers-the-
international-space-station-around-space-junk/

[6] PACT XPP Technologies. 2017. “Processor Licensing”. URL:
http://www.pactxpp.com

[7] ARM Cortex R5 Technical Reference Manual Revision r1p2.
ARM, Sept. 2011. URL:
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0460d/DDI
0460D_cortex_r5_r1p2_trm.pd.

[8] Microsemi Corporation, 2017. “RTG4 FPGA Datasheet”. URL:
https://www.microsemi.com/document-portal/doc_view/135193-
ds0131-rtg4-fpga-datasheet

[9] The Consultative Committee for Space Data Systems CCSDS.
Image Data Compression, Recommended Standard CCSDS
122.0-B-1, Blue Book, 2005.

[10] Daëns, D. 2016. “Feature Detection on new Space FPGA
Technology”. Master Thesis. Airbus DS GmbH, unpublished.

[11] Köthe, U. 2003. “Integrated Edge and Junction Detection with
the Boundary Tensor”. Proceedings of the 9th IEEE International
Conference on Computer Vision.

[12] Suárez Trujillo, D.A. 2015. “Design and Implementation of a
feature detection algorithm for space debris detection on a High
Performance Data Processor (HPDP)”. Master Thesis. Airbus
DS GmbH, unpublished.

[13] Métrailler, L., Vananti, A., Schildknecht, T., Pittet, J-N.,
Utzmann, J., Flohrer, T. 2017. „The Difference Method: A
simple and effective on-board algorithm for space debris
detection “. 68th International Astronautical Congress. Adelaide,
Australia.

[14] Utzmann, J., Ferreira, L., Vives, G., Metrailler, L., Pittet, J-N.,
Silha, J., Lièvre, N., Flohrer, T. 2017. “Optical IN-SITU Monitor
Breadboard System”. 7th European Conference on Space Debris.
ESOC, Darmstadt, 2017.

[15] XPP-III reference Manual – XPP Dataflow Array. PACT XPP
Technologies AG, 2009.

[16] The Consultative Committee for Space Data Systems CCSDS.
Image Data Compression, Informational Report CCSDS 120.1-
G-1, Green Book, 2007.

[17] Utzmann, J., Ferreira, L., Vives, G., Strasser, N., Probst, D.,
Lièvre. 2018. “Optical In-Situ Monitor - A Breadboard System
to Enable Space-Based Optical Observation of Space Debris”.
69th International Astronautical Congress (IAC). Bremen,
Germany, 2018.

