
The Use of Different Architectures and Streak Observations

Algorithms to Detect Space Debris

Gerard Vives Vallduriola (1), Diego Andrés Suárez Trujillo (1), Tim

Helfers (1), Damien Daens (1), Arthur Scharf (1), Jens Utzmann (2), Jean-

Noel Pittet (3), Alessandro Vananti (4)
(1)

gerard.vives@airbus.com, diego.suarez@airbus.com, tim.helfers@airbus.com,
damien.daens@airbus.com, arthur.scharf@airbus.com. Airbus Defence and Space GmbH. Robert-Koch-
Str.1, D-82024 Taufkirchen

(2)

 jens.utzmann@airbus.com. Airbus Defence and Space GmbH. Claude-Dornier-Str., D-88090
Immenstaad

(3)

 jean-noel.pittet@esa.int. Astronomical Institute of the University of Bern (AIUB) Sidlerstr. 5, CH-3012

Bern. (*)

(4)

 alessandro.vananti@aiub.unibe.ch. Astronomical Institute of the University of Bern (AIUB) Sidlerstr.
5, CH-3012 Bern.

(*) Now at European Space Agency. 52 Rue Hillairet. 75012 Paris, France.

mailto:gerard.vives@airbus.com
mailto:diego.suarez.external@airbus.com
mailto:tim.helfers@airbus.com
mailto:damien.daens@airbus.com
mailto:arthur.scharf@airbus.com
mailto:jens.utzmann@airbus.com
mailto:jean-noel.pittet@esa.int
mailto:alessandro.vananti@aiub.unibe.ch

The Use of Different Architectures and Streak Observations

Algorithms to Detect Space Debris

Modern society depends heavily on satellite infrastructure. However, Space

becomes more and more congested by space debris from over 50 years of space

activities. This growing threat in orbit must be monitored. The aim of the ESA

GSTP activity „Optical In-Situ Monitor“ is to design and test a breadboard of a

space-based space debris camera and to develop and test its end-to-end

processing chain.

The on-board processing functions will focus on the payload image processing in

order to reduce the data volume (image segmentation for streak detection).

The suitable technologies for the processing units will be described: the HPDP,

an ARM-Cortex R5F processor and Microsemi’s RTG4 FPGA. For image

processing, several algorithms were tested extensively: the CCSDS 122.0-B-1,

the Boundary Tensor and the Differences Method.

This paper shows the current state of the project and gives an overview of what

activities still need to be tackled before finalisation. The final step of the project

will be to decide which combination of processor-algorithm yields the best

results. Keywords: Space debris, High Performance, Reliable hardware,

reprogrammable hardware and in-orbit flexibility, boundary tensor, Field-

Programmable Gate Array (FPGA) RTG4, differences method, ARM-Cortex

R5F.

1. Introduction

Modern society depends heavily on satellite infrastructure. However, Space

becomes more and more congested by space debris from over 50 years of space

activities (Klinkrad, 2006; ESA – Space Debris, 2017). This growing threat in orbit

must be monitored in order to sustain safe access and operations of the space

infrastructure (ESA Space Situational Awareness Group. 2012; Atkinson, 2012;

Hutchinson, 2013).

The aim of the ESA GSTP activity „Optical In-Situ Monitor“ is to design and

test a breadboard of a space-based space debris camera and to develop and test its end-

to-end processing chain. The corresponding future flight model shall be used for the

detection of small-sized (down to 1 mm) space debris in LEO as well as larger objects

in GEO. It is intended to be flown on a platform in sun-synchronous orbit near the

terminator plane. The breadboard system will constitute a unique facility to perform

realistic tests of the end-to-end processing chain for debris observations within a

controlled environment.

The on-board processing functions will focus on the payload image processing

in order to reduce the data volume. The suitable technologies for the processing units

are: the HPDP (PACT XPP Technologies. 2017), an ARM-Cortex R5F processor

(ARM, 2011) and Microsemi’s RTG4 FPGA (Microsemi, 2017).

For image compression, the CCSDS 122.0-B-1 (CCSDS, 2005) algorithm was

initially tested. For on-board object detection, both the Boundary Tensor (Daëns, 2016,

Köthe, 2003, Suárez Trujillo, D.A. 2015) and the Differences Method (Métrailler, 2017)

were tested extensively.

2. Processing chain

The breadboard software (Utzmann, 2017) will have the structure of a

processing chain, where the main parts are: Segmentation, Object recognition,

Astrometry and Photometry and finally tracklet building.

3. Candidate Processors

The on-board processing functions will focus on the payload image processing

in order to reduce the data volume (image segmentation for streak detection).

These on-board image processing requirements are challenging in terms of on-

board processing performance. First assessments of the on-board functionality show an

input data rate of ca. 100 Megabits per second (Mbps) and a required integer processing

rate of at least 5 Giga-operations per second (GOPS) with at least 16 bit accuracy.

Baseline for this assessment is a frame rate of one 2000 pixels × 2000 pixels image per

second and a feature detection algorithm for data reduction. A buffer memory of 128

Megabytes (MB) must be envisaged for intermediate storage of the image during the

processing steps. Power Consumption for the processing part should not exceed 20

Watts.

The suitable technologies for the processing units can be summarised into three

different categories: General Purpose Processors (GPP)/Digital Signal Processors

(DSP), FPGAs/ASICs and Specialised Processing Units (SPU). GPPs, and also in part

DSPs, provide the easiest development environment and highest developer productivity

but the throughput rate can be rather low compared to an FPGA or some Specialised

Processing Units and the power consumption relatively high. For IN-SITU, an ARM-

Cortex R5F processor was tested. FPGAs are mass produced devices containing

numerous look-up tables and other elements interlinked by configurable interconnects.

This approach is less efficient than Application-Specific Integrated Circuits (ASICs)

since there will inevitably be unused elements of the FPGA, however it offers greatly

enhanced flexibility. It combines multiple cores with different characteristics to allow

efficient mapping of algorithms with high processing demand. For IN-SITU,

Microsemi’s RTG4 FPGA was tested. Finally, most SPUs are essentially an array of

processing elements with efficient access to memory. The increased specialization

makes them more efficient but more difficult to program. For IN-SITU, the HPDP falls

into this latter category.

3.1. High-Performance Data Processor (HPDP)

The HPDP, based on the XPP-III Core by PACT XPP Technologies is a

radiation hardened, reprogrammable array processor, a 16 bit architecture designed in

65 nm STM C65SPACE technology (PACT XPP, 2009). The main component of the

XPP-III Core represents a dataflow array, consisting of two-dimensionally arranged

Processing Array Elements (PAEs), connected by a communication infrastructure that

can be reconfigured at runtime, as well as the operations performed by each PAE.

The XPP core architecture is modular in nature and consists of a number of

reconfigurable PAEs connected by a reconfigurable data and event network where the

data path can go from top to bottom or vice-versa. Two types of PAEs exist: an

Arithmetic-Logic Unit (ALU) PAE and a Random Access Memory PAE. The vertical

data in the architecture and event routing channels are always contained within a PAE,

in the form of Forward Registers (FREGs) that route data vertically from top to bottom,

and Backward Registers (BREGs) that route data vertically from bottom to top.

The array network is enhanced by Very Long Instruction Word (VLIW-type)

processors called Function-PAEs (FNCs), which are used for controlling and

configuring the network and execution of control type processing.

3.2. Microsemi’s RTG4 FPGA

Microsemi's RTG4 device is the fourth generation of flash based FPGAs,

designed for applications in space. The number of logic gates, registers and specialised

multiplier blocks is significantly higher than in the current generation of FPGAs.

Therefore the device is announced to be suitable for signal processing tasks in satellite

applications. Airbus Defence and Space GmbH in Ottobrunn evaluates this device using

an evaluation board from Microsemi by porting one of their GNSS applications onto the

technology.

3.3. ARM Cortex R5F

The ARM Cortex R5F was another evaluated option and is a RISC based

microprocessor design featuring a Dual-Core CPU that is able to run in a Lock-Step

configuration. As this allows to run the CPU in a redundant mode detecting errors

during CPU operations, it is used in safety-critical applications as automotive braking

systems (ABS), electric power steering (EPS), railway communications but also in

aerospace and avionics. It implements the ARMv7-R architecture and is able to use the

Thumb-2 instruction set (a slightly reduced ARM instruction set where both 16 and 32

bit instructions can be used) (ARM 2011).

As for processing performance, the R5F provides dynamic branch prediction

using a global history buffer, which allows the CPU to guess or predict which branch

will be taken in a code condition. Such a branch prediction is in particular useful with

the available 8 stage pipeline. This is done by the PreFetch Unit (PFU) that can fetch

instructions (also on a speculative basis) and data via the Data Processing Unit (DPU) to

increase the performance of the instruction stream on the R5F.

The processor also has an L1 (level 1) memory system - essentially a cache very

close to the CPU - and can handle up to 64KB for both instruction and data (Harvard

architecture) and is interconnected with a Memory Protection Unit (MPU) and Tightly

Coupled Memory (TCM) areas. Featuring up to 12 distinct memory regions, the MPU

can configure each one with separate attributes, as e.g. shared memory, cached (write-

through and write-back) and non-cached regions. Also access permissions can be set

separately. Each cache can have an enabled TCM (dedicated fast RAM) with an

optional error detection and correction mechanism to protect the stored data.

If the TCM and L1 cannot satisfy a data or instruction fetch, the request is

forwarded to the L2 (level 2) system via the AXI master interface. It can then handle the

request via an AXI slave interface, three peripheral interfaces (AMBA AXI and optional

AHB access) to access peripherals or the Accelerator Coherency Port (ACP) interface,

in case the multi-core configuration is used.

The above described R5F design is implemented in the Texas Instruments

TMS570LC4357 microprocessor, which is later used for the actual implementation of

the Differences Method. This CPU has various dedicated peripherals that are connected

to the AHB/AXI interfaces, amongst others an external memory interface (EMIF), a

Peripheral Interconnect Subsystem featuring various modules as for example DMA,

Ethernet Mac (EMAC) and multiple communication modules as SPI, I2C, CAN, etc.

The TMS570LC4357 is built with 4MB on-chip flash memory with error-

correcting code (ECC), 512KB of internal static random access memory (SRAM) with

optional ECC and is running at 300 MHz, providing up to 1.66 Dhrystone MIPS per

MHz when used with an 8-stage pipeline.

4. Candidate Algorithms

For image compression purposes, the CCSDS 122.0-B-1 algorithm was tested while for

on-board object detection, both the Boundary Tensor and the Differences Method were

tested extensively.

4.1. CCSDS 122.0-B-1

The CCSDS 122.0-B-1 is an image compression standard published in 2005 by

the Consultative Committee for Space Data Systems (CCSDS), which also released

other compression standards for arbitrary and hyperspectral data. It is a

recommendation for compression of two-dimensional grayscale image data and was

specifically designed for on-board processing of payload data on spacecrafts. The aim

of the recommendation is to provide an image compression standard that can be

implemented despite the limited computational power and memory (CCSDS 2005,

2007).

Two different modes for lossless and lossy compression are supported. Lossless

compression is achieved by quantization and entropy coding, for lossy compression in

addition image information is removed, depending on compression factors and

beginning with the least important information.

The compression is based on a Discrete Wavelet Transform (DWT). The

resulting sub-bands of the original image signal are then compressed by a Bit Plane

Encoder (BPE), as seen in figure 1 (CCSDS, 2005, 2007).

4.2. Boundary Tensor

The boundary tensor (Köthe, 2003) is a symmetric and positive semi definite

tensor. Its non-negative eigenvalues λ1 and λ2 are defined by:

λ1,2 = ½ × (t11 + t22 ± √((t11 – t22)
2
 + 4 × t12)) (1)

With the positive semi-definite symmetric tensor of order 2 being

 t11 t12
T = (2)

 t12 t22

These eigenvalues represent the variations in the pixel intensity in the direction

of their orthogonal eigenvectors. In other words, the boundary tensor analyses the area

around the processed pixel, and provides a local base showing the direction of the

intensity variation, and the strength of the variation. As such, if λ1 and λ2 are both null it

means that the area of the picture has pixels of constant intensity. If λ1 is strictly positive

and λ2 is null (λ1 ≥ λ2) by definition) then the pixel intensity is only changing in the

direction given by the eigenvector associated to λ1: an edge is detected. If λ1 and λ2 are

both not null, it means that pixel intensity changes in all the directions in the area of the

picture: a corner is detected.

To build the boundary tensor, a set of separable polar filters is applied to the

picture which is to be analysed. These filters are defined as the product of an angular

and a radial function in order to optimize its frequency behaviour. It will also help

getting the invariance to rotations. The first step in applying the filters to the picture is

done by convoluting the picture with each filter row-like, according to the following

equation, where Rrow(x,y) is the result of the convolution. l(x,y) is the intensity of the

pixel at the coordinate (x,y) and Ki are the coefficients of the filter:

+∞
Rrow(x,y) = ∑ Ki × l × (x + i,y) (3)

i=-∞

In practice, the filter coefficients are taken equal to zero outside a radius r. r = 4

will be the used value, as it represents a good compromise between complexity and

precision.

The result of the row-like convolution is then again convoluted with the filters,

but this time column-like. For the algorithm, the kernels were chosen equal to those

taken by Diego Andrés Suárez Trujillo in his implementation of the algorithm on a

HPDP (Suárez Trujillo, 2015).

After having simulated several algorithms on the HPDP (compression, boundary

tensor and several communications algorithms) Airbus can point out which algorithms

are most appropriate for the chosen architecture. This architecture, commonly used in

space applications, is especially performant with loops, as these are processed in

parallel. However, sequential programs are executed slowly. In contrast, a typical PC-

architecture (i.e. programmed in C) is slow for loops, as they cannot be executed in

parallel, but very fast for sequential execution.

There is a hardware limitation that for the HPDP data types should be preferably

16 bit fixed point arithmetic, which can be interpreted as using “short integers” instead

of “reals” in C. For the on-board image processing S/W module, this fact must be

considered when choosing the corresponding algorithms for feature detection and

filtering. Floating point could be emulated on on-board H/W, but with high degradation

of performance.

The boundary tensor can be split in the odd energy which accumulates in the

step edges and in the even energy which accumulates in the roof edges.

The final step of the algorithm is to determine if a pixel corresponds to a resident

space object (RSO) or not. In order to do so, it is necessary to extract from the boundary

tensor a measure of the probability of the pixel being an edge. The tensor trace is

actually the energy contained in the edges: it is the sum of the eigenvalues of the tensor.

4.3. Differences Method

The basic idea of this final algorithm is to compare two frames to detect the

changing features. The registration (alignment and scale transformations) between the

two frames is critical to perform a comparison well enough. Usual image treatment

tools are used in post-processing manner and allow transformation at a sub pixel level.

The following assumptions are made:

(1) Alignment at the pixel level (integer displacement vectors) with an

afterwards binning.

(2) Rotation and scale transformations can be approximated as a number of

displacement vectors on an equal number of sub-frames.

(3) Selection of the features and their surrounding can be made on the base of

the binned pixels.

For the complete on-board segmentation the following steps are suggested.

(1) Remove the saturated stars.

(2) Find the brightest non-saturated stars.

(3) Divide the whole frame into 5 x 5 pixel sub-frames and estimate the

displacement vector for each of them.

(4) Execute a binning on two frames taking into account the displacement

vectors.

(5) Subtract one frame from the other.

(6) Pixels with values over (under) a threshold are selected as potential streak of

the frames being processed.

4.4. Algorithm Trade-Off

The On-Board Processing Pipeline (OBPP) was developed within this project by the

Astronomical Institute of the University of Bern. The main objectives of the OBPP are

the autonomous on-board data reduction, preliminary image segmentation and object

detection. These steps are critical and lead to an effective on-board processing pipeline

optimizing the downlink bandwidth usage.

4.4.1. Properties of the Boundary Tensor

In terms of performances, Matlab simulations performed by AIUB show that the

SNR obtained in resulting images processed by the Boundary Tensor which was

implemented with the RTG4 yields 3.8.

Concerning the time needed to process one single image using the Boundary

Tensor, the HPDP implementation needs over 0.734 s, while the RTG4 only needs 0.06

s, which is much faster than the requirement of 1s for processing 2 images for the IN-

SITU project. The difference in timing between the two implementations can be

explained by the fact the FPGA can process all the convolutions at the same time, as

well as calculating the output, without needing to write any data in an external memory,

unlike the HPDP. The resulting images, as seen in figures 3 to 5 (figure 2 was the input,

an original image obtained with a telescope from AIUB), show that the boundary tensor

algorithm can also detect streaks of different intensity.

Some small differences can be observed between the results of the

implementation on both architectures (HPDP and RTG4). After an analysis of the

dataflow of both architectures, it has been noted that the one on the HPDP had to scale

up the kernel coefficients with a multiplying factor in order to make them bigger than 1.

The RTG4 architecture uses fractional length to deal with this problem. The kernels

used by the HPDP simulation must make the architecture a more sensitive one, as it

seems to detect more debris, but also gets more noise. As a conclusion, both hardware

architectures are comparable in terms of output results; the only difference is that the

HPDP version changes the kernel coefficients and the threshold value while scaling

them up, which takes processing time.

4.4.2. Properties of the Differences Method

The sensitivity of the Differences Method was tested by AIUB. Matlab

simulations show that the SNR obtained in resulting images processed by the

Differences Method is 2.5 and final results show that this algorithm can detect faint

debris streaks down to a peak SNR of 1.2.

Only a part of an image was selected in order to get an input 2048x2048-pixel frame, as

required (this image is visible in figure 6). The Matlab model was launched, and its

output signal was used to build the binary output of the processed picture, visible on

figure 7. Similarly with input image in figure 8, which was synthetically generated, its

output (figure 9) also produces faint streaks.

A zoom into image 6 shows that some noise is detected as debris, like the single

dot at the right of figure 5, which does not seem to be a streak, but noise.

The implementation with the ARM Cortex processor shows that timing

constraints can be met: 2 images can be processed in less than 0.8 seconds. However,

some optimisation is still needed on this platform as not all images yield this result: too

many stars or streaks may increase the processing time.

4.5. Algorithm trade-off conclusion

As can be seen from figures 2 through 9 and Table 1, the Differences Method

algorithm offered valid results within the timing requirements of 2 images / second. In

terms of sensitivity, Matlab simulations performed by AIUB show that the SNR

obtained in resulting images processed by the Differences Method is 2.5 and final

results went as low as 1.2, whereas the Boundary Tensor ran with the RTG4 only

obtained 3.8.

The fact that the Differences Method is more sensitive to faint streaks made the

project decide for this latter algorithm.

5. Conclusion

In this article, both the growing problematic of space debris and the aim of the

ESA GSTP activity “Optical In-Situ Monitor” have been presented. Several image

processing algorithms (CCSDS 122.0-B-1, Boundary Tensor and Differences Method)

were described, implemented and results were presented.

In terms of performances, Matlab simulations performed by AIUB show that the

SNR obtained in resulting images processed by the Differences Method is more

sensitive than the Boundary Tensor; hence, the Differences Method was selected due to

its sensitiveness to faint streaks with very low SNR. All efforts were focussed on this

algorithm and the need to test it with several hardware architectures was identified.

Also, both architectures currently considered for the image processing (ARM

Cortex R5F and RTG4 FPGA) and the algorithms considered for data reduction

(Boundary Tensor and the Differences Method) are being tested. The RTG4 FPGA

implementation of the Boundary Tensor has results which match those attained with the

HPDP; and the ARM Cortex also offers interesting results with the differences method.

The current state of the project shows that the ARM Cortex R5F is a promising

candidate to implement the Differences Method algorithm for a real mission. However,

the implementation of the Differences Method on a Microsemi RTG4 FPGA is still

open to complete Table 1. Up to now, all architectures were able to run both the

Boundary Tensor and the Differences Method within the timing constraints of 2 images

per second. The expectation is that Microsemi’s RTG4 FPGA will also perform well

within the requirements with the Differences Method. Hence, the final decision on what

platform shall be selected is still open.

The final step will be to decide which combination of processor-algorithm yields

the best results.

6. Acknowledgements

The authors acknowledge and thank ESA for their support in the IN-SITU

project. We also want to thank AIUB for allowing us to publish the original images

used during simulations.

Project IN-SITU is funded by ESA Contract No. 4000116518/16/D/SR.

7. References

 Daëns, D. 2016. “Feature Detection on new Space FPGA Technology”. Master Thesis. Airbus

DS GmbH.

 Microsemi Corporation, 2017. “RTG4 FPGA Datasheet”. doi:

https://www.microsemi.com/document-portal/doc_view/135193-ds0131-rtg4-fpga-datasheet

 PACT XPP Technologies. 2017. “Processor Licensing”. doi: http://www.pactxpp.com

 Klinkrad, H. 2006. “Space Debris: Models and Risk Analysis”. Springer-Verlag Berlin, 1
st
 Ed.

 Köthe, U. 2003. “Integrated Edge and Junction Detection with the Boundary Tensor”.

Proceedings of the 9
th
 IEEE International Conference on Computer Vision.

http://www.pactxpp.com/

 Métrailler, L., Vananti, A., Schildknecht, T., Pittet, J-N., Utzmann, J., Flohrer, T. 2017. „The

Difference Method: A simple and effective on-board algorithm for space debris detection “. 68
th

International Astronautical Congress. Adelaide, Australia.

 Utzmann, J., Ferreira, L., Vives, G., Metrailler, L., Pittet, J-N., Silha, J., Lièvre, N., Flohrer, T.

2017. “Optical IN-SITU Monitor Breadboard System”. 7
th
 European Conference on Space

Debris. ESOC, Darmstadt, 2017.

 ESA Space Situational Awareness Group. 2012. “Space Station Manoeuvres to Avoid Space

Debris”. doi:

http://www.esa.int/Our_Activities/Operations/Space_Situational_Awareness/Space_Station_man

oeuvres_to_avoid_space_debris

 Atkinson, N. 2012. “ISS will do maneuver Friday to avoid collision with satellite debris”.

Universe Today. doi: https://www.universetoday.com/92571/iss-will-do-manuever-friday-to-

avoid-collision-with-satellite-debris/

 Hutchinson, L. 2013. “How NASA steers the International Space Station around space junk”.

Ars TECHNICA. doi: https://arstechnica.com/science/2013/07/how-nasa-steers-the-

international-space-station-around-space-junk/

 ESA – Space Debris. 2017. “Space Debris by the numbers”. doi:

http://www.esa.int/Our_Activities/Operations/Space_Debris/Space_debris_by_the_numbers

 Suárez Trujillo, D.A. 2015. “Design and Implementation of a feature detection algorithm for

space debris detection on a High Performance Data Processor (HPDP)”. Master Thesis. Airbus

DS GmbH.

 XPP-III reference Manual – XPP Dataflow Array. PACT XPP Technologies AG, 2009.

 ARM Cortex R5 Technical Reference Manual Revision r1p2. ARM, Sept. 2011. URL

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0460d/DDI0460D_cortex_r5_r1p2_trm.pd.

 The Consultative Committee for Space Data Systems CCSDS. Image Data Compression,

Recommended Standard CCSDS 122.0-B-1, Blue Book, 2005.

 The Consultative Committee for Space Data Systems CCSDS. Image Data Compression,

Informational Report CCSDS 120.1-G-1, Green Book, 2007.

http://www.esa.int/Our_Activities/Operations/Space_Situational_Awareness/Space_Station_manoeuvres_to_avoid_space_debris
http://www.esa.int/Our_Activities/Operations/Space_Situational_Awareness/Space_Station_manoeuvres_to_avoid_space_debris
https://www.universetoday.com/92571/iss-will-do-manuever-friday-to-avoid-collision-with-satellite-debris/
https://www.universetoday.com/92571/iss-will-do-manuever-friday-to-avoid-collision-with-satellite-debris/
https://arstechnica.com/science/2013/07/how-nasa-steers-the-international-space-station-around-space-junk/
https://arstechnica.com/science/2013/07/how-nasa-steers-the-international-space-station-around-space-junk/
http://www.esa.int/Our_Activities/Operations/Space_Debris/Space_debris_by_the_numbers
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0460d/DDI0460D_cortex_r5_r1p2_trm.pd

Figure 1: Functional parts of the CCSDS 122.0-B-1 recommended standard (CCSDS,

2005).

Figure 2 Input original picture obtained by AIUB with a telescope during a night

observation. This is the input image to test the boundary tensor implementation with the

RTG4.

Figure 3 Result obtained by the RTG4 boundary tensor implementation where the input

was figure 2.

Figure 4 Zoom into the input picture shown in figure 2. Even though intensity of streaks

varies, in the original image, the Boundary Tensor algorithm can still detect them.

Figure 5 Zoom into figure 8, input picture is figure 2. The dot to the right of the image

is noise.

Figure 6 Only part of the original synthetic image was taken in order to get a 2048 pixel

by 2048 pixel frame. SNR of streaks are 1.5 and 4 in this frame.

Figure 7 Output of the differences method where input was Figure 6. Stars in the

background have been reduced or completely eliminated; only the area around streaks

and objects of interest is visible.

Figure 8 Original frame synthetically generated by AIUB. SNR of streaks are 1.2 and 6

in this frame.

Figure 9 Output of the differences method where input was Figure 4. It is noteworthy

that the algorithm can detect very faint streaks and objects.

Table 1: Streak detection algorithms and Platforms used during the project.

(*)Desktop tests were performed with an Intel Core i3-6100 Processor clocked at 3.7

GHz.

(**)Desktop tests were performed with an Intel Core i5 Processor clocked at 2.5 GHz

with 4 Mbytes of L3 cache.

All results show the best possible timings obtained so far.

Platform CCSDS Boundary Tensor Differences Method

HPDP 2 images in 4.31s 1 image in 0.7s N/A

RTG4 FPGA

(VHDL) N/A
2 images in 0.2s In progress

ARM CORTEX N/A N/A 2 images in 0.8s

Desktop PC in C 2 images in 0.8s (*) 1 image in 12s (**) 2 images in 0.8s

Desktop PC in

Matlab N/A 2 images in 0.9s 2 images in 0.8s

