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Abstract

Due to the increasing amount of objects in space and the improving sensitivity of modern radar sys-
tems, which enable the detection of smaller objects, the number of tracked objects steadily increases to-
gether with the load on these systems. This may lead to shorter tracking times of single objects to be able
to track as many objects as possible. Such short tracklets have the disadvantage that they may not provide
enough information to compute a reliable initial orbit, if they cannot be matched with a known orbit from
a catalogue. Instead it becomes necessary to combine multiple short tracklets, which belong to the same
object. The identification of these combinations, called correlation, using short-arc radar measurements is
the focus of this paper. Based on the concept of attributables, different methods for initial orbit determi-
nation and tracklet correlation are developed, which use different combinations of observables. Simulated
radar measurements of surveillance campaigns for different orbit types are used to evaluate the function-
ality of the methods. The results show that it is critical to consider the J2-gravitational perturbations by
the Earth oblateness to achieve satisfactory results. While all methods perform the task successfully, one
method based on the classical Lambert problem achieves the best results also with regard to computational
performance. Thus, this method is selected for further development and investigation in the future.
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1 Introduction

The growing number of objects in space, many of
them non-manoeuvrable, pose an increasing risk to the
operations of active satellites. A vital component for
the mitigation of that risk is the detection and orbit de-
termination of uncontrolled space objects. For objects
in Low Earth Orbit (LEO), this task is mainly achieved
by radar systems. As radar systems are becoming more
sensitive, it is possible to detect smaller and thus also
more objects. When an objects passes a radar station,
the measurements form a so-called tracklet. In many
cases, such a tracklet can already be associated with a
catalogued object, in which case it does not pose any
additional challenge. If it cannot be matched with a
catalogued object, it has to be assumed that this object
is a new detection and sufficient data is necessary to
estimate an initial orbit.

To get a reliable orbit, it is necessary to combine

mutiple tracklets. The challenge of this approach is
to identify two or more tracklets which belong to the
same object. Such an association is referred to as a
correlation in the following. As radar measurements
provide positions of the detected objects, it is possible
to attempt an orbit determination with the data from a
single tracklet and perform the correlation based on the
resulting orbits. Such approaches have already been de-
scribed and evaluated [1, 2]. However, these methods
can be expected to become less reliable as the measured
tracklets become shorter and thus provide less informa-
tion and coverage of the orbit.

For short-arc radar tracklets, it was decided to adopt
a technique using attributables, which are often applied
to optical measurements [3]. To use an attributable, the
measured data are fitted as a function over time and one
value of this function is used as a single measurement
in an attempt to average out the noise and condense the
information of the tracklet in a single point. This tech-
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nique has already been successfully applied to the cor-
relation of short-arc optical measurements [4, 5]. Con-
cerning radar data, the use of attributables for the cor-
relation and initial orbit determination has already been
shown [6] and will be further extended in this work.
The goal of this work is to test different combinations
of observables from the attributable for the initial orbit
determination and test their suitability for the correla-
tion problem.

2 Developed Methods

For the development of the methods, it is assumed
that the radar provides four observables, i.e. the range
ρ , the range-rate ρ̇ , the azimuth angle α and the ele-
vation angle δ . With this information the attributable
A can be calculated for each tracklet together with its
time t:

A = {t,ρ, ρ̇,α,δ} . (1)

Additionally, for each observable its uncertainty can be
estimated from the residuals of the fit.

Combining two attributables A1 and A2 gives a to-
tal of eight observables. They are split in two groups,
with one group being used for the orbit determination
and the other one as the discriminator, i.e. comparing
the measured values against the computed values from
the calculated orbit to check for matching attributables.
Ideally, if the two attributables belong to the same ob-
ject the difference between the elements in the discrim-
inator should be small. The exact loss function for the
correlation decision is given in Section 2.4.

Three different combinations and methods have been
developed and other combinations of observables have
not been found to allow an estimate of the initial orbit.
All methods use pure Keplerian propagation to calcu-
late the initial orbits.

2.1 Method 1: Boundary Positions

{ρ1,α1,δ1,ρ2,α2,δ2} → Orbit
{ρ̇1, ρ̇2} → Discriminator

Using ranges and angles gives two positions on the or-
bit and thus yields the classical Lambert problem. Var-
ious solutions have been developed for this problem,
e.g. recently [7]. Here, we use a variation of the it-
eration on the semi-latus rectum p (p-iteration [8]) by
deriving the orbital elements from the two positions to-
gether with the time and the angle between them. The
two range-rates remain as the discriminators.

In general, there are several solutions of this prob-
lem for different numbers of revolutions and prograde
or retrograde orbits, which are all considered in the im-
plementation. From all these possible solutions, the one
with the smallest loss function is chosen.

2.2 Method 2: Initial Position and Velocity

{ρ1, ρ̇1,α1,δ1,(ρ2,α2,δ2)} → Orbit
{ρ2, ρ̇2,α2,δ2} → Discriminator

For the second method, the range-rate of the first
tracklet is included in the orbit generation. The iter-
ation is performed on one component of the velocity
vector at time t1. Together with the range-rate and the
orbital plane, the full velocity vector can be derived via
the geometry of range-rate and line-of-sight. The or-
bital plane is calculated by using the second position,
although the exact position is not enforced as this would
overconstrain the problem. Thus it is possible to use all
of the second tracklet’s observables in the discrimina-
tor as the orbit does not necessarily include the second
position. Also for this method, there are multiple solu-
tions for different numbers of revolutions and prograde
or retrograde orbits.

2.3 Method 3: Velocity-based Integrals of Motion

{ρ1, ρ̇1,α1,δ1,ρ2, ρ̇2,α2,δ2} → Orbit
{∆ω,∆ϕ} → Discriminator

For the third method, the range-rate of the second
measurement is added to the orbit calculation. In this
case the iteration parameter is the norm of the first ve-
locity vector, from which its components can be calcu-
lated via the orbital plane and the range-rate. The same
is true for the second tracklet, for which the norm of the
velocity vector is calculated via the vis-viva-equation.
A solution is obtained when the combinations of po-
sition/velocity have the same angular momentum and
orbital energy at both epochs. Such a solution was first
proposed in 1977 [9].

Usually it is not possible to connect both points with
the same orbit fulfilling the conditions on the range-
rate, thus the discriminator is the difference between the
orbits, namely the argument of perigee ω and the true
anomaly ϕ . The other orbital elements are the same
due to the conditions on the integrals of motion. A sim-
ilar approach for a discriminator is also found in [10].
With this approach there is only one solution for each
prograde or retrograde orbit and there is no additional
comparison between different numbers of revolutions.

2.4 Loss Function

To consider also the uncertainty of the measure-
ments, the Mahalanobis Distance is used as the loss
function [11]:

Md =
√
~DT

d ·C
−1
M,O ·~Dd , (2)



with the vector ~Dd as the difference between the ob-
served discriminator and the ones computed from the
calculated orbit. The covariance matrix CM,O is the sum
of the measurement uncertainties of the discriminators
and the covariance of the discriminators based on the
uncertainty of the observables used for the orbit deter-
mination. This transformation is obtained via numeri-
cal differentiation. In practice, each time the resulting
Mahalanobis distance from a pair of tracklets is lower
than a given threshold, the two tracklets are assumed to
belong to the same object, i.e. are correlated.

3 Results

3.1 Simulations

To test all three methods, different observation cam-
paigns are simulated to create radar tracklets. Noise is
added with the assumption of uncorrelated white noise
for each observable. The assumed noise at a range of
ρN = 750 km is given in Table 1. If the range is larger
than ρN , the noise is increasing as a square root func-
tion [12].

Table 1: Standard deviation σ of noise at ρN = 750 km.

Observable σ

Azimuth, Elevation 0.17◦

Range 20 m
Rate 20 m

s

The only visibility constraints are a maximum range
ρmax = 2500 km and a minimum elevation δmin = 5◦.
For the correlation experiment, a short tracklet of 10s
length at a rate of one point per second is cut randomly
out of the full pass. A linear least squares fit is applied
to this data to estimate the observables and their un-
certainties for the reference epoch in the middle of the
short tracklet. For the comparisons, each method uses
the same set of attributables.

Two survey campaigns are simulated. The first cam-
paign contains 150 LEO objects and runs for 24 hours.
The second campaign consists of 150 objects in Highly
Elliptical Orbits (HEO), which have a perigee altitude
within the range of the radar system, and lasts seven
days to make up for the lower number of revolutions
and less visible passes of HEO objects.

Two different types of propagation are used: Keple-
rian propagation without any perturbations and a full
numerical propagation containing atmospheric drag,
Earth gravitational perturbations, solar radiation pres-
sure and third body perturbations of sun and moon. For
this propagation, the free astrodynamics tool Orekit is
used [13]. The resulting number of tracklets for the four
different simulations is shown in Table 2.

Table 2: Number of tracklets created during the differ-
ent simulations.

Propagation LEO HEO
Keplerian 739 341
Numerical 740 329

3.2 Time Intervals

The following Figure 1 and Figure 2 show the distri-
butions of time between the tracklets in the described
simulations. As one would expect, the number of pairs
is steadily decreasing towards the total time of the sim-
ulation.
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Figure 1: Times between tracklets for LEO case.
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Figure 2: Times between tracklets for HEO case.

3.3 Keplerian Propagation

The idealised case of the two-body Keplerian propa-
gation serves as a basic proof of concept. As all correla-
tion methods use Keplerian propagation internally, the
only challenge in this scenario is the noise of the mea-
surements combined with the fitting of the attributables.

This section and the following ones use the terms
true positive for a correlation between two tracklets



from the same object, false positive for a correlation of
two tracklets from different objects and false negative
for no correlation between two tracklets from the same
object.

The results for all methods and orbits are shown in
Figure 4. All methods reach an acceptable performance
with a clearly visible peak of true positive correlations
for Mahalanobis distances smaller than 3. For the HEO
case, in addition to the false positives, there is also a
significant number of true correlations with a wrong or-
bit in terms of the number of revolutions, i.e. a large
offset in the semi-major axis. To sum up this experi-
ment, it is clearly visible that all methods are in prin-
ciple suitable for the correlation task and the use of at-
tributables is appropriate.

3.4 Numerical Propagation

The simulated measurements based on numerical
propagation are used, while the rest of the setup re-
mains exactly the same as in the previous experiment.
As shown in Figure 5, the degradation of the results is
very strong and none of the methods is working prop-
erly. Clearly, no useful correlation can be obtained this
way. The few true positives with low Mahalanobis dis-
tances belong to pairs of objects which are relatively
close together in time. This will be discussed further in
Section 3.7.

3.5 Including the J2 Correction

For satellites in LEO, apart from drag, the gravita-
tional perturbations due to the Earth oblateness, de-
scribed by the J2-term in the spherical harmonics of the
Earth gravitational field, is the main disturbing force
[14]. Its main effects are the rotation of the orbital
plane, changing the Right Ascension of the Ascending
Node (RAAN, Ω), and the rotation of the Argument
of Perigee (AoP, ω). Both can be estimated with an-
alytical formulae based on the orbit’s semi-major axis
a, eccentricity e and the inclination i with a value of
J2 = 1.08263 ·10−3 [15]:

∆Ω = −2.06474 ·1014 · cos(i)
a3.5 · (1− e2)2 , (3)

∆ω = 1.03237 ·1014 · 4−5sin2(i)
a3.5 · (1− e2)2 , (4)

both in
[

deg
day

]
using a in km.

To consider these effects the position at the time of
the second measurement is adjusted by two rotations, a
comparable approach can be found in [16]. Firstly, the
position is rotated around the Earth z-Axis by (−∆Ω)

with the standard cartesian rotation matrix Rz:

~R′2 = Rz(−∆Ω) · ~R2. (5)

This operation changes the orbital plane, i.e. both the
inclination and the RAAN. Additionally, the angle be-
tween the two positions is reduced by ∆ω , which is ef-
fectively the same as a rotation of ~R2 around the orbit
normal.

Within the algorithms, the initial orbit is calculated
without any corrections and afterwards the corrections
are applied in an iterative process until the orbital plane
and the Mahalanobis distance have converged, which
means that the calculated orbit yields the same correc-
tions as have been applied to calculate it. It should be
noted that the internal propagation within the correla-
tors is still pure Keplerian.

The results of the correlation, shown in Figure 6 us-
ing exactly the same attributables as in the previous sec-
tion, are now vastly improved. The quality of the result
is nearly as good as the ones shown for Keplerian prop-
agation in Section 3.3.

Additionally, Figure 7 shows the development of
true positives, false positives and false negatives over
the correlation threshold value of the Mahalanobis dis-
tance. The additional vertical lines locate the thresh-
olds, at which 90% of true positives is reached, the in-
crease in false positives is higher than in true positives
and the middle between these two points. The closer
these lines lie together, the better is the consistency of
the results. It can be seen, that a threshold of Md = 3,
which was already added to the previous figures, is a
good estimate of a threshold for all methods with LEO
observations and for method 1 even with HEO objects.

3.6 Example: J2 Correction

This section gives an example of the effect of the
J2 correction. Figure 3 shows the Mahalanobis dis-
tance before and after the J2 correction for one spe-
cific example of the LEO experiment obtained with
method 1. Two observations can be made from this
plot. Firstly, even without correction a low Maha-
lanobis distance would indicate a true correlation but
for the wrong number of revolutions and thus a large
error in semi-major axis. Secondly, the function of the
corrected Mahalanobis distance is approximately lin-
ear over the number of revolutions towards the mini-
mum. This could allow another layer of optimisation by
searching for the correct number of revolutions instead
of testing all solutions. Especially in case of a very long
time between two tracklets, this could increase the effi-
ciency significantly.
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Figure 3: Example of result with and without J2 correc-
tion for a pair of LEO tracklets with method 1.

3.7 Discussion

The presented results have shown that in principle
all three methods are able to perform the correlation
task successfully with data from a numerical propa-
gation under the consideration of the J2 perturbation.
Analysing the results in detail, method 1 shows the best
consistency across LEO and HEO campaigns for the
Mahalanobis distance used as a threshold value. Ad-
ditionally, this is also the fastest method computation-
ally. The other two methods mainly suffer from their
use of the velocity vector, which forces various vec-
tor calculations in each step of the iteration. For the
computational efficiency, it is also very advantageous
to be able to use Keplerian propagation. Thus the ap-
plied correction iteration allows to avoid the use of nu-
merical propagation, which would slow down the over-
all process significantly. Concerning the J2 correction,
method 2 also has the problem that it may not be pos-
sible to find an initial solution, which matches both the
orbital plane, which is wrong due to the perturbations,
and the range-rate. This problem also reduces the max-
imum time between two tracklets or a solution via an
estimated correction before the first solution would be
necessary.

The effect of the J2 correction can also be shown with
regard to the number of revolutions between two corre-
lated tracklets. Figure 8 shows the number of revolu-
tions for true positives of method 1 for all previously
shown scenarios. It can be seen that without the correc-
tion, the maximum number of revolutions with a sig-
nificant number of correlations is approximately 5 for
LEO and 8 for HEO. When the corrections are applied,
there are also correlations for larger numbers of revo-
lutions comparable to the case with Keplerian propaga-
tion.

The large number of correct correlations with a
wrong orbit for the HEO campaign is probably due to

the repeated measurements at the perigee, which lead
to a much smaller coverage of the orbit. Addition-
ally, the HEO attributables have larger ranges than the
LEO ones on average, thus also a higher noise level and
larger uncertainties.

4 Conclusion

This work has introduced and tested three different
methods for initial orbit determination with regard to
the correlation of radar measurements. It could be
shown that all methods are working and yield accept-
able results. Especially, the importance of the J2 cor-
rection has become clear in the process of this work.
Combining everything which was learned during the
tests of the methods, it was decided that method 1 is
the most promising due to its consistency of the thresh-
old value and computational performance. This method
will be further extended and tested in the future.
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Figure 4: Distribution of Mahalanobis distances for Keplerian propagation (Left: LEO, Right: HEO).
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Figure 5: Distribution of Mahalanobis distances for numerical propagation (Left: LEO, Right: HEO).
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Figure 6: Distribution of Mahalanobis distances for numerical propagation with J2 correction (Left: LEO, Right:
HEO).
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Figure 7: Evolution of correlation output over Mahalanobis distances for numerical propagation with J2 correction
(Left: LEO, Right: HEO).
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