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ABSTRACT 

Observations of space debris objects in Low Earth Orbit 

(LEO) regime are usually conducted with radars. The 

observations may consist of sequences of range and angle 

measurements, so-called tracklets, usually covering only 

short arcs of the orbit.  

The association of two or more sequences is necessary to 

calculate an initial orbit of the observed space object with 

sufficient accuracy. Orbits can be derived from 

observations in a single short arc and can be associated 

according to an orbital matching criterion. 

In this work the association of more than two short-arc 

tracklets is studied. A multiple hypothesis approach is 

compared to a global approach based on a genetic 

algorithm. Different aspects related to initial orbit 

determination and orbital matching are also analysed. In 

particular, for the latter the Euclidean metric is applied to 

vectors in the orbital element space. 

1 INTRODUCTION 

Validating and improving space debris environment 

models requires regular monitoring of the space debris 

population. Today, statistically sufficient data is acquired 

by conducting optical surveys and by radar beam-park 

experiments, while novel observation techniques, such as 

laser means, are under development. Characterising the 

detected objects provides further input to both, the 

cataloguing and the modelling task. Such information 

may comprise the identification of progenitor objects of 

generated space debris, or, in particular for larger intact 

objects, the estimation of physical properties, such as, 

e.g., area-to-mass ratio, colour, tumbling state and 

attitude change rates. The data acquisition strategy 

implies that recent orbital data of the characterised 

objects are available, which are maintained in a database, 

i.e. in a catalogue, during the characterisation time frame. 

The build-up of a catalogue and its maintenance depends 

on the capacity to determine the orbit of the observed 

objects from few measurements. In fact only a limited 

number of observations are available per night per object, 

each over observation arcs that can be as short as a few 

seconds. Therefore a single track, regardless of 

measurement type, often does not contain sufficient 

information in order to reliably estimate the observed 

object’s state or conduct follow-up observations. For this 

reason the sparse observations or short sequences of 

observations (tracklets) need to be correlated or 

associated with each other.  

Several approaches for optimal association or correlation 

have been described. The developed methods mainly 

relate to observations from optical sensors, as e.g. in 

[RD-1][RD-2][RD-3]. Nowadays several radar sensors 

are fully or partially devoted to space surveillance. 

Independent of light and weather conditions radar 

systems provide observations of space objects in low and 

medium earth orbits. There is less literature regarding the 

correlation of radar data. Gronchi et al. propose in [RD-

4][RD-5] methods to correlate radar data based on the 

Keplerian integrals. A different approach is followed in 

[RD-14] where orbits from single tracklets are 

determined and then compared. 

The tracklet association problem can be extended to three 

or more tracklets. This consideration brings us towards a 

Multiple Target Tracking (MTT) paradigm. The MTT 

problem is the natural extension of a pairwise tracklet 

correlation (two tracklets at two different epochs) to a 

correlation with three or more tracklets. A thorough 

discussion of the different approaches to solve this 

problem and the difficulties encountered can be found in 

[RD-6].  

The only way to optimally solve the MTT problem is to 

try all the different combinations of observations and 

perform an orbit determination for each of these 

hypothetical objects. This quickly becomes 

computationally unfeasible. A popular and well known 

algorithm is the Multiple Hypothesis Tracking (MHT) 

algorithm. In [RD-7] a general explanation of the MHT 

principles is given. This algorithm enumerates all the 

possible combinations of tracklets and evaluates them. In 

order to keep the computational complexity reasonable 

the correlation is solved sequentially, over a sliding 

window. As a consequence the decision to correlate two 

tracklets can be postponed and taken later on the basis of 

additional measurements. This will decrease the number 

of false associations between tracklets.  

A common approach to solve this type of combinatorial 

problems is to seek an approximation to the optimum 

solution, which can be found in a reasonable computation 

time. This kind of problems is solved in different 

branches adopting evolutionary algorithms. In the field 

of tracklet association an example of procedure using a 

genetic algorithm (GA) is given in [RD-8] and employs 

an orbit determination technique based on an optimized 

boundary value approach. 

In this paper a method is proposed to associate multiple 
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radar tracklets (range and angle measurements). For the 

pairwise association a scheme similar to the one proposed 

in [RD-14] and described in [RD-15] is used: calculation 

of initial orbit from radar tracklet, propagation of orbit to 

epoch of second tracklet, comparison of propagated orbit 

with orbit calculated from second radar tracklet (orbit 

matching), computation of the associated orbit. This 

scheme is applied for all the pairwise combinations of 

tracklets to be evaluated. However, two different 

approaches to the combinatorial problem are 

investigated. One based on a Multiple Hypothesis 

Tracking principle and the other on a genetic algorithm.   

In addition to the combinatorial problem the orbit 

matching part is investigated. The association of the two 

orbits can be evaluated using the concept of distance 

between two orbits. The matching is then successful if the 

distance is smaller than a given threshold. In this work 

another definition of distance in the space of the orbital 

elements is used. In [RD-9] the author introduces a 

formula to compute the geodesic distance between points 

in the orbital element space. The results obtained with 

this distance definition are compared with the one 

obtained using the Mahalanobis distance in curvilinear 

coordinates.  

2 MULTIPLE TRACKLET ASSOCIATION 

2.1 Pairwise tracklet association 

Two methods can be considered to compute the initial 

orbit: the Lambert method [RD-11], using two 

observations with angles and ranges, and the time 

difference between them, and the “Range and Angles 

method” described in the Goddard Trajectory 

Determination System (GTDS) document [RD-10], able 

to use more than two observations with an iteration 

scheme. The GTDS Range and Angles method provides 

in most of the tested cases a more accurate initial orbit 

determination than the Lambert method, probably 

because it can use all the observations of the tracklet. 

Only the tracklets with a configured minimum number of 

observations are selected for the orbit determination 

process. The obtained initial orbit has still to be refined 

with a least squares approach where ranges and angles are 

weighted differently. At this stage, for some tracklets the 

least squares will fail to converge, while for other 

tracklets the root mean square (RMS) calculated in the 

least squares fitting exceeds a configured threshold and 

are discarded. 

The orbit calculated from the radar tracklet is then 

propagated to the epoch of the second tracklet and is 

compared with the orbit of the second tracklet using the 

concept of distance between two orbits. Often the 

definition of Mahalanobis distance is used as a measure 

of the goodness of the association. The limitation with 

this measure is in the description of the uncertainty 

distribution, modeled according to the covariance in a 

Gaussian distribution. Mostly the Gaussian assumption is 

enough to describe the uncertainty in the orbital 

parameters, but depending on the coordinate system the 

inadequacy can be accentuated. A detailed explanation is 

given e.g. in [RD-13]. For example, in a Cartesian system 

is difficult to describe the typical “banana” shaped 

elongation of the error ellipsoid, due to the faster increase 

in the along-track uncertainty. Several methods have 

been developed to take into account non-Gaussian 

distributions in propagation and tracklet association. 

Sometimes an appropriate coordinate system can be 

found where the Gaussian assumption approximates the 

actual distribution. Curvilinear coordinates [RD-12][RD-

13] are usually more suitable to describe the orbital 

uncertainty distribution. Essentially the transformation to 

curvilinear coordinates takes into account the real curved 

trajectory of the target. As a consequence in this 

coordinates system the expected “banana” shaped 

ellipsoid can be better approximated with a Gaussian 

distribution. 

After the best tracklet association is found, the final orbit 

using the complete set of observations in the two 

associated tracklets is computed. Here a least squares 

improvement of the available radar initial orbit is 

performed. Different weights for radar and optical 

measurements may be adopted in the weight matrix.  

The RMS obtained in the least squares fitting, and 

weighted according to the average measurement errors, 

is taken into account to still discard, defining a maximal 

value, the wrong tracklet associations. 

2.2 Multiple tracklets 

Two approaches are compared for the association of 

multiple tracklets. In the “direct” approach all possible 

combinations of tracklets are checked and if the 

combination satisfies the threshold requirements the 

association is accepted. For example, if there are 3 fences 

with 3 observed tracklets each, a total of 3 x 3 x 3 = 27 

combinations is evaluated. This means that several 

solutions can be accepted in which the same tracklet 

belongs to different objects. To avoid this inconsistency 

a “global” approach needs to be used, where the solution 

as a whole is consistent. The price to pay is a much larger 

computation effort which usually can be handled only 

approximately e.g. by means of heuristic algorithms. In 

this work for the global approach a genetic algorithm was 

chosen. In both approaches, similarly to the Multiple 

Hypothesis Tracking algorithm, a sliding window 

defines the sets of tracklets (e.g. the number of fences) 

each to be considered in the association problem. The 

orbits calculated from the associations within the window 

are then used with new sets of tracklets in the next shifted 

position of the window. 
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2.2.1 Genetic algorithm 

2.2.1.1 Definition of individual 

A genetic algorithm works with a population of 

individuals where each individual represents a potential 

solution and is evaluated to determine its so-called 

fitness, a measure of the quality of that solution. In our 

context an individual represents the associations between 

the tracklets. To describe an individual we recall the 

definition of k-matrix introduced in [RD-8]. 

In the k-matrix any entry kij can only have a value of 1 or 

0. If kij=1 it signifies that the tracklet in row i is associated 

to the object in column j. The k-matrix is defined in such 

a way that the first tracklet is always associated to the first 

object. Following this logic the k-matrix becomes a lower 

triangular matrix. Besides this, each row may only 

contain one non-zero element. 

2.2.1.2 Definition of fitness function 

The definition of fitness function 

𝑓(𝑘) = − log 𝑃(𝑘) 

for the individual (or k-matrix) k depends on the 

probability 

 𝑃(𝑘) = ∏ 𝑃(𝑜𝑏𝑗𝑖)𝑖 . 

P(obji) is the probability for associations of the single 

object obji (i.e. in the matrix column i). This probability 

has two components:  

𝑃(𝑜𝑏𝑗𝑖) = 𝑃𝐶(𝑁)𝑃𝑀. 

The configuration component PC(N) is defined as  

𝑃𝐶(𝑁) = (1 − 𝑝𝑑)
𝑆−𝑁𝑝𝑑

𝑁(1 − 𝑝𝑓)
𝑁, 

where pd and pf are the probability of true and false 

detection, N the number of tracklets for the object, S the 

maximal number of possible observed tracklets according 

to the observation strategy, e.g. number of fences. The 

orbit matching component PM depends on the pairwise 

orbit distances dij:  

𝑃𝑀~∑ 𝑑𝑖𝑗
2

𝑖<𝑗 . 

Note that this summation over the pairwise distances is 

used also within the sliding window in the direct 

approach. The sum is then divided by the number of 

combinations to obtain an averaged distance for the 

multiple association. 

2.2.1.3 Definition of genetic algorithm 

In a genetic algorithm the population of individuals 

changes from generation to generation. The individuals 

with a better fitness have a higher probability to pass on 

their information to the next generation. Several 

operators can be applied to the population at every 

generation.    

The uniform crossover operator switches, with a certain 

probability, a row between two individuals, selected 

according to their relative fitness value, changing the 

object to which the tracklet is associated. 

In the mutation operator each row can be mutated with a 

user defined mutation probability by randomly 

redefining the column where the ‘1’ occurs, effectively 

assigning the tracklet to another object.  

The two operators are applied until a new population is 

created. In the Elitist genetic algorithm the top few 

percent of the population is copied to the next generation, 

this ensures that the information contained within the 

best individuals is never lost.  

The process of creating new generations is repeated until 

a maximum number of generations is reached.  

The current settings of the algorithm, given a total of N 

tracklets, are: population size 2N, mutation probability 

1/N, crossover probability 0.5, elitist fraction 10%, and 

maximal number of 150 generations. 

2.3 Simulated measurements 

Radar measurements of LEO objects on almost circular 

orbits (eccentricity < 0.01) at altitudes around 1000 km 

were simulated. The objects from the Space-Track TLE 

catalogue are observed during one night from a station at 

40º latitude. Table 1 shows the values used for the 

simulation.  

 Radar pointing Az. 180º, El. 60º 

FoR Az. 120º, El. 20º 

Error (σ) in range 5 m 

Error (σ) in angle 15’ 

Interval betw. obs. 10 s 

Table 1. Values for the simulated radar observations for 

radar tracklets association. 

The pairwise tracklet association procedure with the 

above described scheme was applied. The initial orbit 

was calculated with the GTDS method, propagated with 

a Keplerian model, and the Mahalanobis distance was 

computed in curvilinear coordinates. In the initial orbit 

determination only tracklets with at least 3 observations 

were considered. A threshold of 10 in the Mahalanobis 

distance and a threshold of 5 for the maximal acceptable 

RMS in the least squares calculation of initial and final 

associated orbit were chosen.  

A total of 1024 tracklets is detected. After excluding too 

short tracklets and the tracklets where initial orbit 

determination fails, a net number of 193 tracklet pairs 

remains. Out of these, 100 tracklet triples were selected 

to test multiple tracklet correlation. 

2.4 Results 

Tests with the direct and global approach have been 

conducted with different numbers of objects to see the 
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effect on the computation time. Sliding window sizes of 

2 and 3 were chosen. Table 2 and Table 3 show the results 

for the direct and the global approach, respectively. True 

and false positives for the associated triples and the 

computation time are given. The colors indicate a good 

(green), medium (yellow) and bad (red) performance. 

The simulations were performed on a PC with 4 x Intel 

Core i5 processors at 3.20 GHz. 

The best results in terms of true/false positives and 

computation time are obtained in the direct approach with 

window size 2. With size 3 not only the number of correct 

associations decreases but also the computation time gets 

worse up to 1 min for 100 objects. The change in terms 

of associations could be explained by the fact that the 

fitness function is an average over combinations of 3 

tracklets and bad associations can be compensated. In the 

global approach there is in general a worse performance. 

For window size 2, the number of true positives is 

comparable with the direct approach case with size 3, but 

the number of false positives strongly increases. Besides 

this the computation time reaches several minutes for a 

relatively small number of objects. With window size 3 

the situation still worsens with a smaller amount of 

correct associations and higher computing time. In the 

case with 100 objects the results were not evaluated since 

the simulation duration exceeded a reasonable time 

interval. 

obj. 

win = 2 win = 3 

True / false Time True / false Time 

12 10 / 0 < 1 s 5 / 0 < 1 s 

30 17 / 0 1 s 8 / 0 2 s 

40 24 / 0 1 s 13 / 0 2 s 

100 75 / 5 5 s 33 / 3 1 min 

Table 2. Direct approach. Tracklet correlation with 

different numbers of objects and window sizes: true / 

false positives and computation time. 

obj. 

win=2 win=3 

True/false Time True/false Time 

12 8 / 11 < 1 min 6 / 17 1 min 

30 15 / 23 5 min 11 / 30 7 min 

40 19 / 32 13 min 13 / 36 18 min 

100 - > 40 min - > 1h 

Table 3. Global approach. Tracklet correlation with 

different numbers of objects and window sizes: true / 

false positives and computation time. 

From the results of these preliminary investigations it 

seems that a direct approach with a sliding window is still 

a better solution for the multiple tracklet correlation 

problem. The direct approach allows us, through a 

selected threshold, to keep several possible solutions to 

be evaluated in the next window position. In the global 

method a single solution is kept for further combinations 

with new tracklets. It would be possible to introduce a 

threshold in order to keep several good global solutions, 

but this needs to be further investigated. But besides 

these considerations, by now the real limiting factor of 

the global approach seems to be the amount of time 

necessary to perform the association. In the scenarios 

with 100 objects already the generation of the initial 

population for the genetic algorithm, without any orbit 

evaluation, poses a problem and requires several minutes.  

3 ORBIT MATCHING 

3.1 Distance in orbit element space 

We consider an alternative to the orbit matching through 

the Mahalanobis distance in curvilinear coordinates. In 

[RD-9] the space of bounded Keplerian orbits of fixed 

energy is described using the topology V(E) ~ S2 x S2, the 

Cartesian product of two spheres. This topology can be 

extended through the semimajor axis to the cone K(S2 x 

S2) (see [RD-9] for more details). The formula to 

compute the geodesic distance between points in this 

space is:  

𝑑 =  √2(𝑎1
2 + 𝑎2

2 − 2𝑎1𝑎2 cos ∆𝜓                (1) 
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where    ∆𝜓 = √𝑎𝑟𝑐𝑐𝑜𝑠2(�⃗⃗� 1∙�⃗⃗� 2)+𝑎𝑟𝑐𝑐𝑜𝑠2(�⃗� 1∙�⃗� 2)

2
     (2) 

and         𝜂 = 𝑒 + ℎ⃗ ,         𝜉 = 𝑒 − ℎ⃗ .                            (3) 

Here is 𝑒  the eccentricity vector and ℎ⃗  a normalized 

angular momentum vector ℎ⃗⃗ =
�⃗⃗� 

√𝜇𝑎
 given the semimajor 

axis a and the gravitational parameter μ. The related 

Riemannian metric is induced by the Euclidean metric on 

ℝ6. In the article it is mentioned that the geodesic distance 

on K(S1 x S1) can be generalized to a manifold with n 

spheres K(S1 x … x S1) ∁ ℝ2n. The definition in (2) is then 

replaced by a general expression which contains not only 

specifically the angle differences on the sphere for �⃗⃗�  and 

�⃗⃗� , but additional angles for any  additional sphere: 

            ∆𝜓 = √
∑ ∆𝜃𝑖

2𝑛
𝑖=1

𝑛
.                          (4) 

We want to extend the distance between two orbits (1) to 

all 6 orbital parameters including the orbit anomaly. We 

assume we can describe the problem with a topology K(S2 

x S2 x S1) ∁ ℝ8 and the sphere S1 should be related to the 

eccentric anomaly, according to the construction in [RD-

16]. Then we have in (4) an additional angle difference 

Δθi. For nearly circular orbits instead of the eccentric 

anomaly we consider the difference in true anomaly and 

we calculate this from the position vectors related to the 

two orbits at the osculating epoch. Using the metric given 

in [RD-9] there is one component g66 more in the metric 

tensor for the orbital elements (𝑥𝑖)𝑖=1
6 = (𝑎, 𝑒, 𝑖, Ω, 𝜔, 𝜈), 

with the following non-zero components: 

𝑔11 =2 

𝑔22 =
2𝑎2

1 − 𝑒2
 

𝑔33 = 2𝑎2(𝑒2 sin2 𝜔 + (1 − 𝑒2)) 

𝑔44 = 2𝑎2[𝑒2(1 − sin2 𝜔  sin2 𝑖) + (1 − 𝑒2)  sin2 𝑖] 

𝑔55 = 2𝑎2𝑒2(1 − cos2 𝜔  sin2 𝑖) 

𝑔66 = 𝑎2 

𝑔34 = 2𝑎2𝑒2(sin𝜔 cos𝜔 sin 𝑖) 

𝑔45 = 2𝑎2𝑒2 cos 𝑖 

In this case it is difficult to scale the distance depending 

on the covariance of the computed orbits, in a way similar 

to the case with the Mahalanobis distance. In the latter the 

inverse covariance matrix acts as a metric tensor scaling 

the coordinates system. So the above tensor should be 

modified to include the covariance information. In our 

tests no scaling through the covariance was applied. A 

threshold parameter for the distance was tuned to obtain 

best results. 

3.2 Results 

The correlation performance comparison using different 

distance definitions was conducted in terms of true and 

false positives using the data simulated in the first part. 

Table 4 shows the results using the Mahalanobis distance 

in Cartesian coordinates (as standard baseline), 

curvilinear coordinates, and the distance in the orbit 

element space. For these tests the RMS from the final 

orbit computation after the association is not used to 

discard wrong association. So the ratio true/false 

positives is only due to the threshold applied to the orbit 

matching. Also, for the comparison is useful to see the 

true positives for the same given number of false 

positives. For this purpose the threshold in the Cartesian 

and orbit elements case has been varied accordingly. 

Cartesian 

coord. 

Curvilinear 

coord. 

Orbit 

elements 

140 / 72 179 / 71 166 / 82 

Table 4. True and false positives using the Mahalanobis 

distance in Cartesian and curvilinear coordinates, and 

the distance in the orbit element space. 

The results obtained with curvilinear coordinates are 

slightly better than with the orbit element distance, which 

in turns performs better than using Cartesian coordinates. 

Table 5 shows the correlation results if also the RMS 

threshold is considered to accept or reject the association. 

Cartesian 

coord. 

Curvilinear 

coord. 

Orbit 

elements 

137 / 31 156 / 20 149 / 31 

Table 5. True and false positives using the threshold in 

the distance and in the orbit RMS. 

In general there is a slight decrease in the true positives 

and a massive reduction of false positives. This can be 

observed in the following diagrams. In Figure 1 the RMS 

distribution of false correlations is shown after a cut only 

with the Mahalanobis distance threshold. In Figure 2 the 

distance distribution after only an RMS cutoff is shown. 

We see that one cutoff criterion alone is not enough, and 

only the combination of both effectively removes a 

significant amount of false positives as illustrated in 

Figure 3.   
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Figure 1: False correlation RMS distribution after only 

Mahalanobis distance threshold cut. 

 
Figure 2: False correlation Mahalanobis distance 

distribution after only RMS threshold cut. 

 
Figure 3: False correlation RMS distribution after both 

Mahalanobis distance and RMS threshold cut. 

4 CONCLUSIONS 

A comparison of two methods to associate multiple radar 

tracklets is presented. A direct approach, similar to the 

Multiple Hypothesis Tracking algorithm, and a global 

approach, using a genetic algorithm, are proposed. Both 

approaches base on a common procedure for the pairwise 

tracklet correlation which consists in different steps: the 

initial orbit determination from a single radar tracklet, the 

propagation to the epoch of the second tracklet, the 

comparison of the propagated orbit with an orbit 

calculated from the second radar tracklet, and the 

computation of the associated orbit. In the tested scenario 

and with the given definitions of fitness function and 

orbit matching, the results show a better association with 

the direct approach and a sliding window size of 2. The 

simulations with the genetic algorithm show a clear 

limitation in the computation time which exceeds several 

minutes even for scenarios with only 30 objects. 

Two different distance definitions for orbit matching 

were compared regarding the correlation performance. 

The alternative to the commonly used Mahalanobis 

distance is a definition of distance in the space of orbital 

elements. This space can be described by a different 

topology and the geodesic distance between two points 

can be calculated in the defined manifold. The results 

show that using the alternative distance, values 

comparable to the case with the Mahalanobis distance in 

curvilinear coordinates are obtained. The scaling of this 

distance according to the orbit covariance has still to be 

implemented. Besides the importance of the distance 

definition, it is shown that a second criterion for orbit 

matching based on an RMS threshold is necessary to 

effectively reduce false associations.   
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