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ABSTRACT

Satellites maintain or establish their operational orbit by
performing impulsive or continuous thrust maneuvers.
When cataloging resident space objects, these rapid or
slow orbital changes complicate a successful correlation.
The new orbit remains uncertain and cannot be used for
operations such as conjunction detection. This work out-
lines and assesses a method for the correlation of optical
tracklets to already cataloged objects and the following
orbit recovery. For that purpose, historic orbital data is
analyzed to predict possible states after the maneuver us-
ing kernel density estimation. The resulting probability
density function also provides a measure for the associa-
tion likelihood of a new tracklet. The methods are tested
with optical observations from the Zimmerwald obser-
vatory. Maneuver information and ephemerides are re-
ported by the satellite operator and used as a reference.

Keywords: space situational awareness, correlation, cat-
aloging, maneuvers, short-arc problem, optical observa-
tions.

1. INTRODUCTION

When maintaining a catalog of resident space objects,
new measurements must be associated to already cata-
loged objects. If no matching entry in the catalog is
found, the new observations either originate from an un-
known object or from a maneuvered spacecraft.

Objects in high-altitude orbits are typically observed with
ground-based optical telescopes. Due to limited observa-
tion time, each object can only be observed for a short du-
ration. The resulting short observation arcs, called track-
lets, do not provide enough information to determine the
full orbital state after the maneuver (cf. [10]). The up-
dated orbital state is essential for operational tasks, such
as collision avoidance, but is also required in order to
find the object again and keep the number of duplicate
database entries low. As proposed in [13], a likely can-
didate state after the maneuver can be obtained by ana-
lyzing and characterizing historic data from the object in

the catalog to predict the state after the maneuver. The
maneuver history can be obtained from satellite opera-
tors or estimated from past cataloged states. An exam-
ple of the latter estimation is given by Lemmens and
Krag [5] who detect maneuvers from the publicly avail-
able Two-line element catalog (space-track.org). Figure
1 shows the time-series of the inclination of Meteosat-
9 determined from tracklets. The satellite is observed
from the Zimmerwald observatory in Switzerland and
serves as a test case throughout this paper. The North-
South station-keeping maneuver epochs can be approxi-
mately computed from the figure by identifying the local
peaks. Figure 2 shows the time-series for selected mean
orbital elements (using the mean element formulation by
Kamel [4]). The elements are derived from the weekly
reported reference orbits by EUMETSAT. In addition to
the North-South station-keeping as in Figure 1, it also
shows other types of maneuvers. In total, the satellite
performed one relocation maneuver, seven North-South
station-keeping maneuvers, some small slew maneuvers,
and otherwise East-West maneuvers in this time period.
The maneuver epochs and types were reported by EU-
METSAT by email [9].

Before starting the orbit recovery, the measurements must
be first associated to the cataloged objects. Otherwise
the catalog size would artificially increase without ac-
tually adding any new objects to the domain. For that
purpose, the historic data from the figures is used to de-
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Figure 1: Time series of inclination (i) determined from
optical observations of Meteosat-9. Gray vertical lines in-
dicate reported North-South station-keeping maneuvers.
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Figure 2: Time series of mean orbital elements for Meteosat-9: semi-major axis a w.r.t. to the synchronous aS , inclination
i, longitude λ, eccentricity e.

scribe the post-maneuver state probability. The resulting
density function is then used to compute an association
likelihood. Alternatively, Holzinger et al. [2] and Singh
et al. [7] propose to use a control effort distance metric
to rank different possible object associations, i.e. the ob-
ject which realizes the measurement with the least fuel
consumption is the most likely originator.

After the successful association step, the most likely post-
maneuver state is estimated. In [2] the orbital solution
which requires the least amount of fuel is considered as a
good estimate. However, realizing the new measurement
with minimum fuel does not need to return the same op-
timal result as when performing long-term orbit mainte-
nance maneuver optimization. The approach developed
in [13] overcomes this limitation by augmenting the in-
formation of the new observation with the probability
density function derived from the historic data. The ob-
servation correlation and recovery of the most likely or-
bital state is briefly illustrated with a simulated example.
The two possible approaches, i.e. control effort mini-
mization as in [2, 7] and using historic data as in [13],
are assessed with reference ephemerides and maneuvers
of Meteosat-9 and optical observations from the Zimmer-
wald observatory collected from 2008 to 2016. The focus
of this paper (complementary to the analysis in [13]), is
the assessment of the accuracy of the recovered states us-
ing the real observations.

2. MANEUVER CHARACTERIZATION

As proposed in [13], maneuvers are characterized with
so-called feature vectors. The information from the past
states before and after the maneuver is compressed in this
vector. The vector elements are selected in a way that

allows grouping, i.e. values that should be similar for the
same type of maneuver.

The feature vector is assembled from the variables de-
scribed in the following:

1. A maneuver type is dependent on the current or-
bital elements, e.g. whenever a geostationary satellite
reaches its box boundaries in longitude, it will most
likely perform an East-West maneuver. Similarly, it
will perform a North-South correction when reaching
a certain inclination.

2. The change in orbital elements itself also describes the
maneuver, e.g. a similar semi-major axis change is
typically used for East-West station-keeping.

3. Maneuvers are likely to be performed after similar
time-intervals ∆ti (due to similar dynamics causing
a deviation from the nominal orbit and due to human
operator practice).

4. Station-keeping maneuvers typically repeatedly re-
quire the same amount of fuel described with ∆V .
For instance, East-West maneuvers, when performed
regularly, need a certain ∆V depending on the sub-
satellite longitude [14]. Inclination control requires
a different amount of fuel and depends on the epoch
(due to luni-solar perturbations).

The above explained characteristic variables apply to ma-
neuver strategies with instantaneous changes (which is
observable for most of the satellites in the geostationary
domain). Continuous thrust orbit control strategies re-
quire different variables to group the maneuver types, e.g.
the rate of change of orbital elements over time. How-
ever, the available dataset contains only satellites with



instantaneous orbital changes. Therefore, this analysis
focuses on these maneuver strategies.

For each past maneuver epoch i = 1 . . . n, where n is
the number of past maneuvers, the feature vector is then
given by

ci = (eib, e
i
a,∆ei,∆ti) , (1)

where eib are the pre-maneuver mean elements (consist-
ing of semi-major axis a, mean longitude λ, inclination i,
and eccentricity e), eia are the elements after the maneu-
ver, ∆ei is the difference between them and ∆ti is time
difference w.r.t. to the last maneuver. Instead of using
the full set of orbital elements, a subset is used which is
sufficient to describe geostationary orbits.

Figure 3 shows selected components of the feature vec-
tors ci for all maneuver epochs (illustrated with the
×). As also observable in the inclination time series,
the points can be grouped into two types of maneuvers:
one group has no inclination change (accumulation of
many samples in the middle of the bottom plot) and one
dispersed group with inclination corrections. A semi-
major axis change is likely once a longitude value around
9.5◦ − 9.7◦ or around 0◦ is reached (upper plot). The
latter described group represents the strategy before the
relocation in the beginning of 2013. The upper plot also
shows that the maneuvers after the relocation are typi-
cally performed once every 60 days.

In addition to the samples, the figure also shows an empir-
ical density function based on the points of the sample in
the feature vector space. The probability of and the rela-
tionship between the characteristic variables is described
with the so-called kernel density estimation (cf. [11]).

Given any new state after the maneuver en+1
a at

tn+1(described with orbital elements), the probability
density can be expressed in terms of the historic feature
vectors ci with the following equation

f(en+1
a ) =

n∑
i

wi kh (c̃n+1 − ci) , (2)

where kh is a smoothing kernel function with bandwidth
h, wi are weighting factors, and the tested feature vector

c̃n+1 = (en+1
b , en+1

a ,∆en+1,∆tn+1) . (3)

is obtained by combining the latest orbital state in the
database en+1

b with the new state en+1
a and computing

the time difference ∆tn+1 to the last observed maneuver.
Various choices for smoothing kernels kh are discussed
in the literature along with strategies how to select the
bandwidth h [12]. Here, a Gaussian kernel is selected
with Silverman’s rule of thumb for the bandwidth selec-
tion. In order to allow for strategy changes (e.g. the re-
location), weights are used to decrease the impact of old
samples on the density function. A forgetting factor φ is
introduced to scale the kernel. The respective weights are
computed with

wi = φt
n+1−ti . (4)
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Figure 3: Probability density of orbital changes, pre and
post-maneuver states and time since the last maneuver.

The size of the weights thus depends on how old the ma-
neuver of the sample is. A typical choice for φ is 0.99.
A smaller value will decrease the weight for older sam-
ples. This weighting scheme explains why some accumu-
lations in Figure 3 do not contribute much to the empiri-
cal density function (e.g. the samples with a longitude λ
around 0◦).

3. ASSOCIATION OF NEW OBSERVATIONS
AND RECOVERY

After receiving a new tracklet, it must be first associated
to a catalogue object. If no match in the catalog is found,
the closest objects flagged as a maneuverable spacecraft
is assessed. In addition, the probability that they maneu-
vered or not can be estimated and considered (e.g. as sug-
gested in [6]). The probability that the observation origi-
nates from a specific object is then calculated to select the
most-likely candidate. If multiple candidate objects can
be associated with a similar probability, each one can be
loosely associated using the probability as an association
weight.

The computation of the likelihood is explained in the fol-
lowing. The cataloged object state before the maneuver is
now denoted with eb at tb for notational simplicity (drop-
ping the superscript index). A new tracklet at ta is rep-
resented with the line-of-sight s and its time-derivative
ṡ. When augmenting these observation vectors with the



range and range-rate x = (ρ, ρ̇)T, a state hypothesis ex-
pressed in orbital elements at ta is given

ẽa(x) = e(r, ṙ) , (5)

where the position and velocity in the inertial frame are

r(x) = R + ρs and ṙ(x) = Ṙ + ρ̇s + ρṡ (6)

and R and Ṙ denote the station position and velocity.

The density function for the post-maneuver state is then
computed from inserting Equation (5) into (2)

f(x) =

n∑
i

kh(c̃(x)− ci) . (7)

The approximate ∆t is computed from ta and the last
estimated maneuver epoch. All other orbital elements
required for c̃ are computed from x and the new ob-
servation vectors s and ṡ. This effectively reduces the
high-dimensional feature vector density function to a 2-
dimensional one.

The most-likely orbital solution using this density func-
tion is then given by

x̂k = arg maxx∈C f(x) (8)

and consequently if multiple catalog states are tested with
one new measurement, the one with the largest probabil-
ity is the most promising candidate for the association.
As the density function in Equation (2) is not necessar-
ily unimodal, the corresponding density function in range
and range-rate can be multi-modal as well and thus allows
for multiple feasible solutions.

Figure 4 shows the density for a simulated observation
of Meteosat-9. A series of observations is simulated us-
ing the reference states at the post-maneuver epochs and
deriving the line-of-sight and its time-derivative thereof.
The reference ephemerides before and after the last ma-
neuver (East-West) of the dataset obtained from the
weekly reference orbits. The maximum of the probabil-
ity density function w.r.t. to the reference solution in the
center is indicated with the white cross (×). The error in
range and range-rate for this simulated example is around
100 m and 0.1 m/s. The density as shown in Figure 3 is
computed from about 50 pre- and post-maneuver states
of Meteosat-9 before the last maneuver.

An alternative approach is proposed by Holzinger et
al. [2] and Singh et al. [7], where the orbit of a satellite
after a maneuver is recovered assuming that the measure-
ment is realized using the least amount of fuel ∆V . Sim-
ilar to the first approach, a function is optimized to find
the most likely candidate. The function and minimum is
shown in Figure 5 and is explained in the following para-
graphs.

Let eb at tb be the known orbital state of a cataloged ob-
ject right before the maneuver and ea at ta the unknown
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Figure 4: Probability density function of orbital state
given a new measurement. Range and range-rate are cen-
tered around the reference solution (+). The white cross
(×) depicts the maximum of the density function.
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Figure 5: ∆V requirement depending on x (relative to the
reference solution (+) in the center). The minimum ∆V
solution is depicted with the ×.

after it. The fuel consumption is approximated using the
quadratic loss [2]

P = min

{
1

2

∫ ta

tb

u(t)Tu(t) dt

}
(9)

where u is the thrust control and is included as an ad-
ditional acceleration in the equations of satellite motion.
The quadratic loss describes the minimum energy solu-
tion of a trajectory connecting eb and ea. It is found with
optimal control problem solvers (here the one by Houska
et al. [3] is used) and is commonly easier to find than the
direct solution giving the smallest possible ∆V . More
details about the approach can be obtained from [2, 7,
13].



The required ∆V is bounded with

∆V (eb, ea) ≤
√

2(ta − tb)P (10)

and the most likely state after the maneuver, using Equa-
tion 5 and the minimum energy trajectory, is accordingly
given by

x̂m = arg minx ∆V (eb, ẽa(x)) . (11)

The observed error of the optimal point x̂m for the sim-
ulated example in Figure 5 is approximately one order of
magnitude worse when compared to the solution of the
first method using historic data.

4. ACCURACY ASSESSMENT

This section compares the accuracy of the resulting post-
maneuver state of the kernel-density estimate x̂k and the
∆V minimum x̂m. The accuracy using simulated ob-
servations is discussed in [13]. Here, tracklets collected
at the Zimmerwald observatory are used. A set of mea-
surements observed at most 7 days after a maneuver is
selected. As occasionally Meteosat-9 is not observed for
a longer duration, not every maneuver can be tested in
this analysis (compared to when using simulated obser-
vations as in [13]). However, the accuracy of the results
should be more representative of what is achievable with
the methods.

The last 8 maneuver epochs, which fulfill the criterion
above, are used to select the states before and after the
maneuvers from the weekly orbits. The analysis is per-
formed for the latest maneuvers in the data set in order
to guarantee that the empirical density function is suffi-
ciently sampled. The kernel density estimation for each
test considers only states in the past. Seven of the ob-
served maneuvers within this sequence are East-West sta-
tion keeping (EWSK) maneuvers and one is a small slew
maneuver (SLEW). The maneuvers and the correspond-
ing tracklet epochs are summarized in Table 1.

The density function and the ∆V -function are optimized
using the same numerical optimization routine (opti-
mize.minimize) from the SciPy library [8]. The syn-
chronous semi-major axis (∼ 42, 164 km) serves to com-
pute an initial starter for the optimization. In case of the

Table 1: Maneuver epochs and observation epochs.

# Type Maneuver Observation

1 EWSK 2014-01-08 07:13 2014-01-08 21:50
2 EWSK 2014-03-11 08:43 2014-03-12 03:49
3 SLEW 2014-04-08 10:58 2014-04-10 03:13
4 EWSK 2014-08-27 05:48 2014-09-01 20:45
5 EWSK 2014-10-22 07:13 2014-10-23 17:55
6 EWSK 2014-12-17 22:58 2014-12-18 23:09
7 EWSK 2015-02-09 06:58 2015-02-10 02:11
8 EWSK 2015-09-29 05:28 2015-09-30 18:47

eb

without maneuver

x̂m

x̂k
x∗anew tracklet

cataloged object

Figure 6: Accuracy assessment using reference range and
range-rate x∗a after maneuver. The different solutions x̂m

and x̂k are compared to the reference in range - range-
rate space.

kernel density function f , a bad starter can fall into a re-
gion with numerically zero probability. Hence, the iter-
ative optimizer will not find a gradient or better value in
the close vicinity of the starter and will fail to converge.
This behavior was only observed when artificially placing
starters far away from the solution. However, the density
function can be initially sampled on a grid to find the local
maxima. From thereon the iterative solvers are capable of
finding the most likely solution.

The difference between reference and obtained solutions
is shown with the errors in range and range-rate all se-
lected epochs. The different correlation methods and so-
lutions x̂k, x̂m, and the reference x∗, are illustrated in
Figure 6. All points lie on the same line-of-sight and have
the same topocentric angular velocity. The comparison
results are shown in Figure 7.

The kernel density function estimate predicts the refer-
ence state after the maneuver better by one order of mag-
nitude. This relative performance difference agrees with
the theoretical assessment in [13] using only simulated
observations. Due to errors in the tracklets, the overall
accuracy decreased when compared to the previous anal-
ysis.

5. CONCLUSIONS

The accuracy of solutions obtained after a maneuver has
been determined for a real measurement set. The prelim-
inary results show that the accuracy of the kernel den-
sity method appears to be one order of magnitude bet-
ter. However, this is only true as long as the maneuvers
are predictable. The minimum energy solution can al-
ways serve as a fall-back option when no historic infor-
mation is available. The analysis is only performed for
a single satellite with a repeating pattern of maneuvers.
Future studies will have to investigate the accuracy for
more satellites and different maneuver types and strate-
gies. Furthermore, future research should identify the
extend of the historic data necessary to obtain accurate



Epochs after maneuver
100
150
200
250
300
350
400
450
500
550

∆
ρ

 [m
]

0.0

0.1

0.2

0.3

0.4

0.5

∆
ρ̇

 [m
/s

]

Epochs after maneuver
0

1000
2000
3000
4000
5000
6000
7000
8000
9000

∆
ρ

 [m
]

0.5

1.0

1.5

2.0

2.5

3.0

∆
ρ̇

 [m
/s

]

Figure 7: Difference between predicted and estimated
post-maneuver states using the historic data (upper plot)
and the minimum energy solution (lower plot) for 8 ma-
neuver epochs of the Meteosat-9 dataset. The gray circles
depict the range differences and the black squares depict
the range-rate differences.

post-maneuver estimates, i.e. from which point on is the
method capable to predict the future maneuvers. Addi-
tionally, the quality of the resulting orbits will be assessed
further, e.g. if it suffices to successfully correlate the fol-
lowing observations with the determined state.

In the framework of space object behavior understand-
ing, objects are classified into groups e.g. by the differ-
ent operational maneuver strategies [1]. The catalog data
(e.g. orbital states, measurements) can be merged with
additional information sources (e.g. operator data, news
articles, etc.) to describe the expected spacecrafts mo-
tion. If such a database is available, individual methods
to predict the post-maneuver state depending on the satel-
lite class could be developed. The here used kernel den-
sity estimation is a simple and robust way of describing
the orbital change. However, more advanced prediction
methods and more available object information can im-
prove the performance. The principle idea of merging the
new observations with the probable state density remains
the same and could be also applied when using another
density prediction tool.
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