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ABSTRACT 

The currently proposed space debris remediation 
measures include the active removal of large objects and 
“just in time” collision avoidance by deviating the 
objects using, e.g., ground-based lasers. These 
techniques require precise knowledge of the attitude 
state and state changes of the target objects. In the 
former case, e.g. to devise methods to capture the target 
with a tug spacecraft, in the latter, to precisely propagate 
the orbits of potential collision partners, as disturbing 
forces like air drag and solar radiation pressure depend 
on the attitude of the objects.  

A reliable and prompt determination of the attitude and 
attitude motion of an inactive spacecraft is also required 
in contingency situations. 

The paper will describe new techniques to determine 
space debris attitude states and to model their temporal 
evolution by combining heterogeneous observations 
from different ground-based observation techniques 
including synthetic aperture radar measurements, optical 
light curve observations, and cooperative laser ranging 
measurements. Results for a set of decommissioned or 
lost LEO, MEO and HEO spacecraft and upper stages 
will be presented. 

1 INTRODUCTION 

The classical example where a prompt knowledge of the 
attitude state of a space object is required is the loss of 
contact with or the control of a spacecraft. 
Communication with the spacecraft is in most cases 
only possible during periods when the on-board antenna 
is oriented towards the Earth and the actual orientation 
is thus a crucial parameter when investigating the 
possible reasons for a loss of contact. Similarly the 
attitude motion may provide crucial information to 
determine possible causes and remediation measures in 
contingency situations. 

Recently the determination of attitude states, and in 
particular rotation rates, of space objects became a topic 
of interest in the space debris community. This is to be 
seen in the context of the multitude of techniques which 
are currently proposed to remove space debris from 
orbit or to re-orbit them into disposal orbits. The 
majority of the techniques to remove large objects, 

which are driving the evolution of the space debris 
population on the long term, require capturing the target 
with a robotic arm, a net, a harpoon, or another 
mechanism. The attitude motion is in all these cases a 
critical parameter and the maximum tolerable target 
rotation rate is limited. 

Another application where the attitude state of the 
object plays an import role is the orbit determination 
and orbit propagation as disturbing forces like air drag 
and solar radiation pressure depend on the attitude of 
the object. Precise predictions are required to prevent 
collisions between objects in space. If one of the 
potential collision partners in a predicted close 
conjunction is manoeuvrable, a collision avoidance 
manoeuvre may be performed. The efficiency of such 
manoeuvres is critically depending on the accuracy of 
the orbit prediction. New techniques are required if both 
objects are non-manoeuvrable. One proposed technique 
consists in nudging the objects by means of ground-
based (or space-based) lasers. Again, the interaction of 
the laser beam with the target and thus the orbit change 
depends on the attitude motion of the object. 

2 OBSERVATION TECHNIQUES 

2.1 Passive optical observations 

The temporal variation of the magnitude of an object, 
the so-called light curve, is a traditional technique to 
determine the attitude motion of space objects. Light 
curves are commonly used in the astronomical 
community to determine physical characteristics of 
minor planets, namely their rotation rate, spin axis 
direction, shape, and surface properties. An example of 
a light curve of a tumbling upper stage in GEO and the 
reconstructed phase are given in Figure 1. (If not noted 
otherwise, all illustrations are from the “Swiss Optical 
Ground Station and Geodynamics Observatory 
Zimmerwald” near Bern, Switzerland, an establishment 
of the Astronomical Institute of the University of Bern.) 

Another passive optical technique to determine the 
attitude and the attitude motion is the acquisition of a 
series of resolved images of the target, so-called direct 
imaging. Ground-based observations suffer from 
atmospheric turbulence limiting the resolution of direct 
images. Large object in LEO, however, may be resolved 
by applying adaptive optics techniques or by “lucky-
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observatories which spent so much effort to acquire the 
data. Part of the data presented was acquired in the 
context of the ESA project “Debris Attitude Motion 
Measurements and Modeling” 4000112447/14/D/SR. 
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