Optimal Scheduling for Geosynchronous Space Object Follow-up Observations Using a
Genetic Algorithm

Andreas Hinze
PhD Student, DLR/GSOC, Wessling, Germany
Hauke Fiedler
Head Space Situational Awareness, DLR/GSOC, Wessling, Germany
Thomas Schildknecht

Astronomical Institute, University of Bern, Switzerland

ABSTRACT

Optical observations for space debris in the geosynchronous region have been performed for many years.
During this time, observation strategies, processing techniques and cataloguing approaches were success-
fully developed. Nevertheless, the importance of protecting this orbit region from space debris requires
continuous monitoring in order to support collision avoidance operations. So-called follow-up observa-
tions providing information for orbit improvement estimations are necessary to maintain high accuracy
of the cataloged objects. Those serve a two-fold: For one, the orbits have to be accurate enough to be
able to re-observe the object after a time of no observations, that is keeping it in the catalogue, sec-
ondly, the importance of protecting active space assets from space debris requires even higher accuracy
of the catalogue orbits. Due to limited observation resources and because a space debris object in the
geostationary orbit region may only be observed for a limited period of time per the observation night
and telescope, efficient scheduling of follow-up observations is a key element. This paper presents an
optimal scheduling algorithm for a robotic optical telescope network using a genetic algorithm that has
been applied providing optimal solutions for catalogue maintenance. As optimization parameter the
information content of the orbit has been used. It is shown that information content utilizing the orbit’s
covariance and the information gain in an expected update is a useful optimization measure. Finally,
simulations with simulated data of space debris objects are used to study the effectivity of the scheduling
algorithm.

1. INTRODUCTION

The space debris population around the Earth is permanently increasing. Objects in lower altitudes like
in the Low Earth Orbit (LEO) are monitored by radar telescopes which are less dependent on weather and
time conditions. Optical observations are used to observe space debris objects in higher altitudes. One
of the most important and valuable orbit around the Earth is the Geosynchronous Earth Orbit (GEO).
During the last years, several survey strategies have been developed to build up a catalogue of space
debris objects for characterizing, collision avoidance and to improve the knowledge of the population
size. For catalogue maintenance, additional observations are necessary to improve the orbit and to keep
the orbit accuracy within a given limit. Since the GEO has to be observed with optical telescopes,
the length of the observation night is the most limiting factor. This depends on the location site of
the telescope and the season. Providing an optimum coverage of the GEO and to enable a continuous
monitoring independent of seasonal limitations, a telescope network distributed around the earth both
in the northern and southern hemisphere is required. A few telescope networks observing space debris
in GEO are existing. The Space Surveillance Network (SSN) of the United States Strategic Command
(USSTRATCOM) operates some optical sites around the world [6] and maintain two catalogues where
only the restricted one is distributed globally. The International Scientific Optical Network (ISON) in
Russia operates 35 observatories and has also global GEO coverage capability. But there is no catalog
available. Finally, ESA is developing the technology and the architecture for a European network known
as European Space Situational Awareness (ESSA) [2]. Next to these networks there is also the three
telescope network of TAROT which is observing space debris in GEO [6]. Originally developed to observe
Gamma-ray bursts it was expanded in 2009 by two additional telescopes and it started to monitor the
GEO. However, there is no general catalogue of space debris objects distributed. Therefore, the German
Space Operation Center (GSOC) builds up a small-aperture robotic telescope network in collaboration
with the Astronomical Institute of the University of Bern. This telescope network will be used for
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surveillance observation to build up a space debris catalogue and for tracking observations for catalogue
maintenance. More details are given in [3]. In this paper, an algorithm to schedule tracking observations
will be shown. If once a determined orbit of a GEO object is good enough to re-observe this object after
several days this orbit may be added to the catalogue. Simulations showed that after four observation
sequences such a “secure” orbit may be determined [9] and an additional follow-up observation may be
scheduled after up to one week. Depending on the used telescope and its Field of View (FoV), the
position inaccuracy should be less than the half FoV to ensure a successful re-detection. Scheduling
of follow-up observations requires knowledge of the target orbit and the available observatories. If the
preferred observatory is selected, scheduler usually take into account the priority of an observation of an
object [8] and time constraints. Latter ones have to be optimized corresponding to the reduction of the
number of conflicts and to perform as many observations as possible. Since GEO objects could be visible
over a longer time span of the observation night, the visibility constraints (e.g. phase angle, background
illumination,. . .), which influence the detection probability, are not the only criteria to schedule an
observation. The prediction of the effectivity of a future observation depending on the observation
geometry and the orbit error covariance may be used to schedule an observation at the most effective
time [4][5]. Scheduling of telescopes belongs to a class of NP-hard problems. Consequently, there are no
known algorithms guaranteed to give an optimal solution and run in polynomial time. There are several
techniques to handle such problems. In this work a genetic algorithm (GA) will be used to optimize the
scheduling.

2. METHODS

2.1. Information Content

The advantages using a telescope network are the possibilities to perform more observations and to have
more flexibility to schedule them as opposed to a single telescope. This allows to observe each object
more often and to schedule observations at the most effective way. The effectiveness depends on the
sensor-target geometry and therefore on the selected station and the observation time as well as on the
uncertainty of the catalogued orbit.

The uncertainty of a catalogued orbit is given by the orbit error covariance matrix P. Furthermore, the
observation geometry is given by the matrix H which consists of the partial derivatives of the observations
with respect to the orbit state.

Oh(z)
ox
Oh(az) Oh(az) Oh(az) Oh(az) Oh(az) Oh(az)
Org(t)  Ory(t) 0Or.(t) Ouvgy(t) Ovy(t) Ov.(t)

= 2
Oh(el)  Oh(el) Oh(el) Oh(el) Oh(el) Oh(el) .

Org(t)  Ory(t)  Or,(t) Ovg(t) Ouy(t) Ov,(t)

Using the equations of the Kalman filter for measurement update

H= 1)

K=P H' W *'+HP H")! (3)
Pt =(I—-KH)P~ (4)

where K is the Kalman gain, P~ the propagated covariance matrix to the epoch of the observation, W
the weighting matrix which is in this case the inverse of the observation error matrix and PT the updated
orbit error covariance matrix a method is given which connects the three mentioned dependencies.
Usually all observations of the same object within a single FoV crossing constitute a so-called tracklet.
A tracklet is a set of observations acquired over short period of time which presumably belong to the
same object.

There are several different methods to calculate the information content of a new follow-up tracklet. In
this study, the Shannon Information Content (SIC) introduced in [I0] is used. Here, the information
content is a measure of the reduction of entropy. We suppose Shetore is the entropy of the knowledge
P(X) before and Sqgter is the entropy of the knowledge of P(X,Y") with one additional follow-up tracklet.
Then, the SIC is given by:

SIC = Sbefore - Safter
= S[P(X)] = S[P(X,Y)] ()
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Fig. 1. Evolution of the position error (dashed lines) over three orbits for object 21703. The solid lines
represent the improvement of the positon error by one new tracklet and the corresponding information
content.

If we use the covariance matrix, then finally the SIC is given by:

1 _ 1
SIC = iln\PpOS| — §ln|P;f)S| (6)
1 _ _
:§1n|Ppos'(P;E)s) 1’ (7)

where | P, | denotes the determinate of the position covariance matrix before the observation and | P,
the determinate of the positon covariance matrix after the observation.

In Fig. [I] an example of the influence on the position error of one additional tracklet during three orbits
is shown. Here, a tracklet consists of nine coordinate pairs in azimuth and elevation within two minutes.
The propagated position error in radial, along-track and cross-track are represented by dashed lines. If
there is a new observation at a specific true anomaly these errors are reduced to a value on the solid line.
The information content of each tracklet is represented by the black solid line and follows almost the
along-track error line since this error is the major reason for the expansion of the position error ellipsoid.
The disadvantage of this method is, that the information content has to be computed for every time
when the target object could be observed. On the other side, this method ensures that for a given orbit
with a corresponding covariance matrix the optimal available observation geometry depending on the
observatory and observation time is selected.

2.2. Genetic Algorithm

Since scheduling belongs to NP class of problems, heuristics are used to solve this kind of problems.
One of the most practical algorithms are the genetic algorithms (GA) inspired by the natural evolution.
Their major advantages are the variability to treat any kind of problems and to approximate to solutions
for even very complex optimization problems. The high efficiency of these algorithms is reached by
the parallel search for solution during each iteration. But this involves also the risk to converge to a
non-optimized solution since there is no procedure to develop such a GA. Therefore a lot of tests or
simulations, respectivily, are required to ensure the capability of the developed algorithm.

Nevertheless, there is a guideline to develop a GA. At the beginning, a population of individuals have to
be created. An individual in the sense of GA is a candidate solution to an optimization problem. Based
on their fitness, individuals are selected and the two main operators are used to create better solutions.
Sometimes it is an advantage to save the solution with the highest fitness value from the previous to the
next generation to ensure that there is no worsening. Finally, there have to be criteria to terminate the
algorithm. This may be e.g. the number of generations or the highest fitness value.
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Fitness function The fitness function represents the optimization problem and their solution should
be minimized or maximized, respectivily. A solution exists for each individual and the determined
fitness value allows to compare the solutions. In this study, an indiviual represents a valid schedule for
all telescopes. A valid schedule means, that an observation for each objects is only once scheduled and
that this object is visible at the given time. Visibility constraints are maximum phase angle, minimum
distance to the Moon and to the Earth’s shadow, respectively. For the sake of simplicity, it is not possible
to schedule an object if one of these conditions is violated. Each scheduled observation of an object j
has an expected information content SIC; at the given time according to Eq. . The fitness value F;
of each individual is the sum of all scheduled SIC; values and is given by:

N
Fy =Y SIC; (8)
j=1
Now, the optimization problem is given by:
N
max F' = maXZSICj 9)
j=1

Initial population An initial population is created at the beginning of each GA. This happens usually
randomly to secure a good coverage of the search area. In this study, the number of individuals and
therefore the size of the population correspond on the number of chosen objects. Since some chosen
objects have the same optimum observation time at the beginning or at the end of the observation night
there is a need to ensure a high diversity of the initial population. Therefore the objects were prioritised
by sorting according to their position error. Creating the first individual the first object (with the worst
positon error) is chosen and the follow-up observation is scheduled at the optimum time during the night.
All other observations where scheduled according to the priority of the object and as close as possible
to the optimum time. After that the first object got the lowest priority. For the second individual,
the observation of the new first object was scheduled at the optimum observations time and all other
observations again according to the priority of the object. At the end, the object with the highest priority
got the lowest one. This procedure was repeated until for each chosen object the observation was once
scheduled at the optimum observation time. The remaining individuals were created randomly.

Selection Using Eq. (8]), the fitness of each individual is calculated and according to that value indi-
viduals are selected for the two main operators in a GA. This allows selecting good solutions for further
generations and to eliminate bad solution.

There are three common methods to select individuals: fitness proportionate selection, rank based selec-
tion and the competition selection. Simulations showed that for this application the rank based selection
is the most promising method.

This method was developed to avoid a early convergence right in the beginning of the search. Instead
of using the absolute fitness values of each individual all individuals are sorted according to their fitness
values. Now, the rating of an individual depends on the position only. This leads that individuals with
a high rank are selected with a higher probability in comparison with individuals with a lower rank.
Furthermore, this causes also a longer search but increases the probability to find the global optimum.
Even if there are many individuals with good fitness values the selection pressure is still high which
avoids to get stuck in the search. Defining the selection probability, Baker [I] suggest following method:
The individual with the highest rank get the expectation values Ep 2 with 1 < Ep . < 2. The expecta-
tion values of the worst individual is now given by Eyin = 2 — Fnax. Finally, the expectation values of
any other individual is given by:

r(a;) —1

D) i) = Emin Emaa: - Emin 10
() +( )l (10)
where r(a;) is the rank of the individual a;. The selection probability is then given by
1
ps(ai) = —E(a;) (11)

Baker suggested the value 1.1 for E,,,, and this value is also used in the described algorithm. Finally,
the selection is performed using stochastic universal sampling with the selection probabilities ps(a;).
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Usually, the number of selected individuals matches the size of the population. Because of the selection
probability, some individuals are selected several times and other ones not at all. This leads to the
elimination of the worst individuals.

Ensuring that the fittest individual of the next generation is not worse than the fittest one in the current
generation, elitism is used and the fittest individual is inserted directly to the next generation. But keep
in mind that this individual still may be selected for both crossover and mutation operator, respectively.

Crossover The first operator is the crossover operator which allows big jumps in the search area. Here,
two selected individuals are taken and at a given point an interchange occurs. At the end there are two
new individuals with properties of the both parent individuals. There are approaches to interchange at
a single point or at n-points what depends from the assignment. Finally in most cases a probability is
defined when such a crossover may take place.

In the presented algorithm, a random point within a chosen individual is taken. Since each object has
to be scheduled only once, an interchange of two objects between the selected individuals might produce
a chain of interchanges until each object is scheduled once and both new individuals represent a valid
schedule. Obviously, the visibility constraints need not be taken into account since the time when an
observation of an object is scheduled does not change. Instead of defining a probability to allow such a
crossover, the new individuals are only accepted when their fitness value is better than the average of
the whole current population. Otherwise, the parent individuals get to the next generation. In the end,
the size of the population of the next generation is equal to the size of the previous population.

Mutation The second operator used in GA is the mutation which is used to make small jumps in the
search area. It is still in discussion which one is more useful but in the end a good balance between
crossover and muations should be guaranteed [7].

In this scheduling algorithm, a random number of individuals is selected for mutation. For each selected
individual, a random number of mutations may take place. At each mutation, a selected observation
is interchanged with the observation scheduled before or after the selected one. If this interchange is
possible taking into account the visibility constraints of the object, the sum of SIC;+SI1C; is compared
to the previous situation. This mutation is accepted if there is an improvement of the fitness.

3. RESULTS

Simulations were used to demonstrate the effectivity to schedule observations according to their informa-
tion content and the functionality of the GA. Performing these simulations a catalogue of space debris
objects was created.

3.1. Catalogue

Base for the simulated space debris object catalogue is the USSTRATCOM -catalog from 2015-01-01.
Using the ranges of the orbital elements given in Tab. [I} 1187 objects were selected. The simulated
observation campaign lasted from 2015-01-01 to 2015-03-31. During this time 720 objects were visible
from the Zimmerwald observatory, Switzerland. For each of these objects, a random number of observa-
tion nights within the campaign was chosen whereas a minimum of 20 observation nights was required.
On every observation night two tracklets, each consisting of 10 observations with an arc lenght of two
minutes, were simulated. All observations have a standard deviation of 1”. For simplification, an equal
area of 10.0m? and a weight of 200 kg was chosen.

Tab. 1. Orbital elements

35000km < a < 50000 km
0.0 <e< 0.3
0.0° < i< 20.0°
0.0° < < 360.0°
0.0° <w < 360.0°
0.0° <M< 360.0°
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3.2. Performance of the Shannon Information Content

Keeping objects in the catalogue requires follow-up observations. Usually, such observations are scheduled
when the position error exceeds a given limit. Performing the following simulations, a maximum along-
track error of 1400 m was allowed. If this value was exceeded, a new observation during the following
night was required.

In Fig. the progress of the information content is shown. The red dots represent when the object is
not visible whereas the green dots represent the possible observation time. Finally the black cross shows
the time when the highest information content of a new observation is expected. Since the along-track
error is the main factor for the expanding error ellipsoid, Fig. shows its evolution of this error during
the observation night.

Tllustrating the effect of a new observation tracklet on the position error, one object from the catalogue
was used. Starting at epoch MJD = 57120.5, tracklets with a stepsize of 600 s were simulated during 24 h.
Afterwards the catalogued orbit and one tracklet were used to determine an improved orbit. Figure
shows the along-track error of these 145 improved orbits at epoch MJD = 57121.5. The green dots
represent the tracklets at the visibility time whereas the red dots represent tracklet which were not able
to schedule. The black cross represents the orbit where the tracklet was scheduled at the optimal time
according to the information content.

Finally, all determined orbits were propagated over one week and the results are shown in Fig. The
black cross, which represents the orbit with the optimized scheduled follow-up tracklet, is nearly at the
minimum. The gap to the minimum may be explained by the fact that the whole position error was
minimized.

3.3. Performance of the Genetic Algorithm

Using the population mentioned above, simulations were performed to illustrate the performance of
the GA regarding to the quickness, convergence and quality. In the used version of the scheduling
algorithm, the visibility of each object was limited by a minimum elevation of 20° above the local
horizon. Furthermore, a maximum phase angle of 100° and a minimum distance of 20° to the Moon and
galactic plane, respectivily, were assumed to allow the scheduling of an object.

Three telescope were considered (see Tab. where only Zimmerwald (Switzerland) and Sutherland
(South Africa) will belong to the future SMARTnet. OGS (Tenerife) was selected to have one in longi-
tude displaced observatory. Depending on the season observations were scheduled more in Sutherland
(summer) or more at OGS (winter). Only a few observations were scheduled at Zimmerwald because of
the visibility constraints.

Tab. 2. Telescope location:
Longitude A, Latitude ¢ and Height h

Al°] el’]  hm]
Zimmerwald 7.465 46.877 970
Sutherland 20.813 -32.937 1700
OGS -16.304  28.167 2400

During the presented observation night 2015-04-08 a total observation time of about 1700 min was avail-
able and 436 objects from the catalogue were visible. Depending on the evolution of the covariance
matrix and therefore of the position error, 62 objects were selected if the threshold value was exceeded.
At the beginning of the scheduling process, each object was allocated to one telescope according to the
highest information content of a new observation. After that each schedule for a specific telescope was
optimized according to Eq. @ using the GA. If the information content of a scheduled observations at the
given telescope was less in comparison with the highest one at another possible telescope or observations
for one object could not be scheduled at all, another telescope was assigned.

Fig. ] shows the highest fitness value in each generation. Each colour represent one run of the GA with
randomly chosen positions for crossover and mutation. Finally, after about 600 generations the algorithm
converted to the optimum and therefore the optimized schedule for all telescopes was created.
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Fig. 2. Evolution of the information content and the along-track error of catalogue object 27813 during

the observation night 2015-04-08. The green dots represent the time of visibility, the red dots represent
the time of non-visibility. The black cross remarks the optimum observation time.
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Fig. 3. Along-track error of object 27813 at different epochs for 145 determined orbits using one additional
follow-up tracklet for orbit improvement. With a stepsize of 600s one follow-up tracklet was simulated
and an orbit determined. The green dots represent the time of visibility, the red dots represent the time
of non-visibility. The black cross remarks the determined orbit with the optimum scheduled tracklet.
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Each colour represents a run of the GA using random positions for crossover and muation operator,
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4. CONCLUSIONS

In this work an optimized scheduling algorithm was introduced. The information content of a follow-up
tracklet was based on the influence to reduce the positon error covariance. This reduction depends on
the used observatory, the time of the observation and the already determined covariance of the object.
Scheduling observations corresponding to this information content leads to a better result in comparison
with scheduling the other methods according to simple schemes which try to ensure that the position
error may be kept under a treshhold over a longer time. Furthermore, it allows to minimize the number
of necessary follow-up observations for catalogue maintenance.

The algorithm should schedule the observations for each selected object in the optimum way. This
requires to schedule as many observations as possible and to maximize the information content of each
observation. Scheduling belongs to the class of NP-hard problems and therefore heuristics offer techniques
to solve this kind of problems. Because of the effectivity of genetic algorithms, such an algorithm was
developed and introduced. Several telescopes and visibility constraints were taken into account to perform
simulation that ensure a realistic scenario scheduling follow-up observations for catalogue maintenance.
Nevertheless some ideal assumptions were used to introduce this algorithm. All catalogued objects had
the same size and weight and there was no function taking into account a detection probability.

The results show that all required observations of the selected objects are scheduled and that the genetic
algorithm converges to the optimium. Using random positions for crossover and mutation operators, the
algorithm converges after about 600 generation to the maximum.
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