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Summary
This research aims to provide a method that can treat the association and initial orbit determination problems
simultaneously. This problem is also known as the Multiple Target Tracking (MTT) problem. The complexity of the
MTT problem is defined by its dimension S. The S≥ 3 MTT problem is an NP-hard combinatorial optimization problem.
In previous work an Elitist Genetic Algorithm (EGA) was proposed as a method to approximately solve this problem. It
was shown that the EGA is able to find a good approximate solution in a reasonable computation time. In this work the
algorithm is applied to observations taken at the Zimmerwald observatory.
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1 Introduction

Cataloging space debris can be put in the more general
framework of Multiple Target Tracking (MTT). The MTT
problem can be summarized as follows. A region contains
any number of target objects of which the states are
unknown. Starting from a set of S scans, collected by
any number of sensors, both the total number of targets
and their states have to be estimated. False alarms
(sporadic measurements) and missed detections are taken
into account. A scan is defined as a set of observations
that all originate from different targets. Mathematical
formulations of the MTT problem are available.1

The problem consists of two interrelated parts, namely
data association and state estimation. In the data association
part the observations from the different scans have to be
associated to the correct targets. The state estimation
part then takes these associated groups of observations
and estimates the target state. This leads to a search for
the permutation that results in the target state estimates
that best approximate the measurements, according to a
certain metric. The number of scans S that are used
in the problem correspond to its dimension. For a

dimension of S ≥ 3 the number of possible permutations
greatly increases and the problem becomes NP-hard.2 For
instance, in the case where S = 2 with two observations per
scan, there will be a total of seven possible permutations.
However for the S = 3 case with two observations per
scan, there will be 87 permutations.3 Several attempts
have been made to solve the S ≥ 3 MTT problem in
an efficient manner. The Multiple Hypothesis Tracking
(MHT) algorithm3, 4 seeks to find the optimum solution
to the MTT problem by employing a branch and bound
methodology. In order for this algorithm to have a realistic
computation time the MTT problem has to be simplified.
Another approach to the problem is to seek an approximate
solution that can be obtained in a realistic computation
time. An algorithm has a realistic computation time
when it has a Polynomial time complexity. Examples
of algorithms that seek an approximate solution are
the Lagrangian relaxation technique,1 and the GRASP
algorithm.5 Another possibility is to use a population based
approach. Such an approach aims to statistically represent
the debris population. An example of such a method is the
AEGISS-FISST method.6

The goal of this work is to validate the previously
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developed algorithm7 by applying it to experimental data.
A data set of optical observations of the 19.2◦E ASTRA
cluster is used, all observations are collected by the
Zimmerwald observatory.8

The paper is organized as follows. First the algorithm is
explained in a concise manner. Afterwards, the test case is
presented and the results are shown. In the last section the
conclusions are drawn.

2 Elitist Genetic Algorithm (EGA) applied to MTT

An EGA is a variation on the well known Genetic
Algorithm.9 The difference is that the EGA copies a certain
percentage of best solutions from the current generation to
the next generation. Any GA needs a fitness function to
optimize and an individual to represent a solution in the
search space. In this work an individual is represented by a
k-matrix as shown in Equation 1.

K =


1 0 . . . 0

k2,1 k2,2 . . . 0

. . . . . .
. . . 0

ki,1 ki,2 . . . ki, j

 (1)

In the k-matrix any entry ki, j can only have a value of
1 or 0. If ki, j = 1 it signifies that the tracklet in row i is
associated to the object in column j. The k-matrix is defined
in such a way that the first tracklet is always associated to
the first object. Following this logic the k-matrix becomes
a lower triangular matrix. Besides this, each row may only
contain one non-zero element such that Σ

j=N
j=1 ki, j = 1, i =

1, . . . ,N. A k-matrix is evaluated according to the fitness
function given in Equation 3.

fx =



LN≥2(m∗, p̄∗)− ln

(
1√

(2π)n|Σ
Θ̄
(m∗, p̄∗)|

)
− (S−N) ln(1−Pd)−Nln(Pd)−Nln(1−Pf )

N ≥ 2

−ln
(
(1−Pd)

S−1 Pd
(
1−Pf

))
+ γ N = 1

(2)

fy =
X

∑
x=1

fx (3)

Here y denotes a k-matrix within the current generation,
x denotes a hypothetical object in that k-matrix. The
detection and false alarm probabilities are given by Pd and
Pf respectively. The problem dimension is given by S, N
is the number of tracklets used in the IOD. The covariance
of the attributed minus computed values is denoted by Σ

Θ̄
.

For the N=1 case the tuning parameter γ is introduced.
The LN≥2(m∗, p̄∗) is the minimized Mahalanobis distance
between the attributed and computed values. The optimized
number of revolutions and ranges at the first and last tracklet
epoch are given by m∗ and p̄∗ respectively. These values
are obtained with the OBVIOD method.7 The OBVIOD

Table 1: Parameter settings of the EGA (N is the total
number of tracklets in data set)

pop. size pmute px−over % copied γ maxgens
2N 1/N 0.5 10 -39 500

method works directly with so-called tracklets. A tracklet
is a series of observations spaced closely together (e.g. at
30 second intervals). A line fit is made to the individual
observations in the tracklet which estimates the average
topocentric angular position and rate. These estimated
values are also known as attributed values.

3 Results

Satellite clusters are some of the most demanding problems
in the field of space debris tracking. The close proximity of
the satellites makes it difficult to correctly distinguish them
from each other. Consequently it is difficult to determine
their state in a correct way. Associating two tracklets at
a time can lead to ambiguous results, therefore a S ≥ 3
method is beneficial in this case. In Figure 1 the data set
can be found.
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Figure 1: The attributed topocentric angular positions and
rates for the ASTRA cluster.

The EGA is applied to the data with the parameter
settings listing in Table 1.

The EGA is applied 100 times, the average k-matrix at
the end of the run is given in Figure 2. At the end of each
run a local search operator is used to further optimize the
matrix if possible.

From Figure 2 it can be concluded that the algorithm
consistently converges to the same solution. It correctly
finds four objects, this coincides with the true number of
satellites that are in this specific ASTRA cluster. To validate
the results of the OBVIOD method they are compared
to those of a least squares estimator. At the AIUB
an implementation of the least squares estimator called
SATORB10 is used. Both SATORB and OBVIOD use a
Keplerian motion model. The differences in right ascension
and declination are found in Figure 3. Figure 4 shows the
difference in the angular rates.
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Figure 2: The attributed topocentric angular positions and
rates for the ASTRA cluster.
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Figure 3: The ephemeris as determined by SATORB and
OBVIOD.
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Figure 4: The ephemeris as determined by SATORB and
OBVIOD.

4 Conclusions

In conclusion it can be said that the developed algorithm7

performs as desired on real data. It is able to consistently
converge to the same solution and to consistently find the
correct number of objects. Also, the OBVIOD method
results are consistent with those of a least squares estimator.
The differences between these two estimated orbits are

well under the measurement noise of a single optical
observation.
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