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Abstract 

Currently several thousands of objects are being tracked in the MEO and GEO regions through optical means. This 

research aims to provide a method that can treat the association and orbit determination problems simultaneously, 

and is able to efficiently process large data sets with minimal manual intervention. This problem is also known as the 

Multiple Target Tracking (MTT) problem. The complexity of the MTT problem is defined by its dimension S. The 

number S corresponds to the number of fences involved in the problem. Each fence consists of a set of observations 

where each observation belongs to a different object. The S≥3 MTT problem is an NP-hard combinatorial 

optimization problem. In previous work an Elitist Genetic Algorithm (EGA) was proposed as a method to 

approximately solve this problem. It was shown that the EGA is able to consistently find a good approximate 

solution when applied to simulated data. In this work the algorithm is applied to observations taken by the 

ZimSMART telescope of the Zimmerwald observatory. 
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Nomenclature 

α Right Ascension 

δ Declination 

N  number of tracklets 

S dimension of MTT problem 

𝑃𝑑 detection probability 

𝑃𝑓 false alarm probability 

𝛾 fitness function tuning parameter 

K k-matrix 

𝑘𝑖,𝑗   entry (i, j) in k-matrix  

x number of hypothetical object in k-matrix 

y number of k-matrix in population 

𝜌𝑡 range at epoch t 

Θ̅ vector of attributables 

𝑚∗ optimized number of orbital revolutions 

�̅�∗ optimized range values (𝜌1, 𝜌𝑁)  
𝜎𝑜𝑏 standard deviation of a single observation 

 

Acronyms/Abbreviations 

MTT  Multiple Target Tracking 

MHT  Multiple Hypothesis Tracking 

PBMH  Population Based Meta-Heuristic 

EGA  Elitist Genetic Algorithm 

GA  Genetic Algorithm 

PBIL  Population Based Incremental 

Learning 

DE  Differential Evolution 

OBVIOD Optimized Boundary Value Initial 

Orbit Determination 

IOD Initial Orbit Determination 

 

1. Introduction 

Cataloging space debris can be put in the more 

general framework of Multiple Target Tracking (MTT). 

The MTT problem can be summarized as follows. A 

region contains any number of target objects of which 

the states are unknown. Starting from a set of S scans, 

collected by any number of sensors, both the total 

number of targets and their states have to be estimated. 

False alarms and missed detections are taken into 

account. A scan is defined as a set of observations that 

all originate from different targets. For a mathematical 

formulation of the MTT problem, the reader is referred 

to [1]. The fields where MTT problems are encountered 

are numerous, examples are the tracking of targets in a 

military context [2], and the tracking of particles 

resulting from high energy collisions in particle physics 

[3].  

The problem consists of two interrelated parts, 

namely data association and state estimation. In the data 

association part the observations from the different 

scans have to be associated to the correct targets. The 

state estimation part then takes these associated groups 

of observations and estimates the target state. This leads 

to a search for the permutation that result in the target 

state estimates that best approximate the measurements, 

according to a certain metric. The number of scans S 

that are used in the problem correspond to its 

dimension. For a dimension of S≥3 the number of 

possible permutations greatly increases and the problem 

becomes NP-hard [4]. For instance, in the case where 

S=2 with two observations per scan, there will be a total 
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of seven possible permutations. However for the S=3 

case with two observations per scan, there will be 87 of 

these permutations [5]. A problem can be classified as 

being either a problem with P or NP complexity. The P 

stands for Polynomial, which means that it can be 

solved in a polynomial time. If we say that the problem 

size is denoted by n then the computation time will be 

e.g. 𝑛2  (or any other order). The NP stands for 

Nondeterministic Polynomial time. This means that the 

computation time is not described by a polynomial but 

for instance could be 2𝑛 . The computation time of an 

NP problem will quickly become unrealistically large. 

Despite its challenges, several attempts have been made 

to solve the S≥3 MTT problem. The Multiple 

Hypothesis Tracking (MHT) algorithm [5] seeks to find 

the optimum solution to the MTT problem by 

employing a branch and bound methodology. In order 

for this algorithm to have a realistic computation time 

the MTT problem has to be greatly simplified. Another 

approach to the problem is to seek an approximate 

solution that can be obtained in a realistic (polynomial) 

computation time. Examples of algorithms that seek an 

approximate solution are the Lagrangian relaxation 

technique [1], and the GRASP algorithm [7]. The 

alternative to solving the S≥3 problem is to solve the 

S=2 problem. This problem has the favorable 

computational complexity of O(𝑛2). Recent work in this 

area can be found in [8]. These methods evaluate pairs 

of observations, and take a definitive decision on 

whether to associate the two observations or not. This 

can lead to wrong associations, since no information 

besides those two observations are taken into account 

(an S≥3 MTT approach would consider more 

observations, as well as the possibilities of false alarms 

and missed detections). The severity of this problem 

depends on the target density in the region of interest. 

So to solve the MTT problem applied to a densely 

populated area (e.g. satellite clusters, break-up events) 

an efficient way has to be found to search through the 

possible permutations. The MTT problem represents a 

so-called track based approach, where the state of each 

object is explicitly resolved. Another possible approach 

to cataloging space debris is by using a population 

based approach. Such an approach aims to statistically 

represent the debris population. An example of such a 

method is the AEGISS-FISST method [11]. 

The goal of this paper is to validate the previously 

developed algorithm [17] by applying it to experimental 

data. A dataset containing optical observations of the 

19.2°E ASTRA cluster is used, all observations are 

collected by the ZimSMART telescope [18]. 

Only optical sensors are considered in this work, 

these provide right ascension and declination values. A 

few important terms that are used throughout the paper 

are defined as follows: 

 Observation: a right ascension and declination 

pair at epoch t: (α, δ)t. 

 Tracklet: a series of seven observations at 

equally spaced intervals (e.g. 15 seconds), already 

determined to stem from the same object. 

 Attributed value: a value that is derived from a 

tracklet by fitting a line to the individual observations.  

 Attributable: a set of the four attributed values 

at epoch t: (𝛼, 𝛿, �̇�, �̇�)
𝑡
.  

 Fence: a set of tracklets that all belong to 

different objects. 

The paper is organized as follows. In the next 

section the algorithm is briefly outlined. References are 

given that explain the algorithm in more detail. In 

section 3 the algorithm is applied and its results are 

presented. Section 4 consists of the conclusions that can 

be drawn.  

 

2. Elitist Genetic Algorithm (EGA) applied to MTT 

with optical measurements 

An EGA is a variation on the well known Genetic 

Algorithm [14]. The difference is that the EGA copies a 

certain percentage of the best solutions from the current 

generation to the next generation. Any GA needs a 

fitness value to optimize and an individual to represent a 

solution in the search space. In this work an individual 

is represented by a k-matrix as shown in Equation 1. 

 

𝐾 = (

1 0 ⋯ 0
𝑘(1,1) 𝑘(2,2) ⋯ 0

⋮ ⋮ ⋱ 0
𝑘𝑖,1 𝑘𝑖,2 ⋯ 𝑘𝑖,𝑗

)  (1) 

 

In the k-matrix any entry 𝑘𝑖,𝑗 can only have a value 

of 1 or 0. If 𝑘𝑖,𝑗 = 1 it signifies that the tracklet in row i 

is associated to the object in column j. The k-matrix is 

defined in such a way that the first tracklet is always 

associated to the first object. Following this logic the k-

matrix becomes a lower triangular matrix. Besides this, 

each row may only contain one non-zero element such 

that ∑ 𝑘𝑖,𝑗 = 1
𝑗=𝑁
𝑗=1 , 𝑖 = 1,… , 𝑁. A k-matrix is evaluated 

according to the fitness function given in Equation 3.  

 

𝑓𝑥 =

{
 
 
 

 
 
 

𝐿𝑁≥2(𝑚
∗, �̅�∗) − ln(

1

√(2𝜋)𝑛|ΣΘ̅(𝑚
∗,�̅�∗)|

)

−(𝑆 − 𝑁) ln(1 − 𝑃𝑑) − 𝑁ln(𝑃𝑑)

−𝑁ln(1 − 𝑃𝑓), 𝑁 ≥ 2

−ln ((1 − 𝑃𝑑)
𝑆−1𝑃𝑑(1 − 𝑃𝑓)) + 𝛾, 𝑁 = 1

(2) 

 

 

𝑓𝑦 = ∑ 𝑓𝑥
𝑋
𝑥=1      (3) 
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Here y denotes a k-matrix within the current 

generation, x denotes a hypothetical object in that k-

matrix. The detection and false alarm probabilities are 

given by 𝑃𝑑  and 𝑃𝑓  respectively. The problem 

dimension is given by S, N is the number of tracklets 

used in the IOD. The covariance of the attributed minus 

computed values is denoted by ΣΘ̅. For the N=1 case the 

tuning parameter 𝛾  is introduced. The 𝐿𝑁≥2(𝑚
∗, �̅�∗)  is 

the minimized Mahalanobis distance between the 

attributed and computed values. This function is 

minimized with the OBVIOD method [17]. The 𝑚∗ 

denotes the optimal number of orbital revolutions 

between the epoch of the first tracklet and that of the 

last tracklet used in the IOD. The �̅�∗ is the optimized 

pair of range values (𝜌1, 𝜌𝑁)  at epochs 𝑡1  and 𝑡𝑁 

respectively.  

The EGA uses this representation of an individual 

and the fitness function (3) to evaluate a population of 

individuals. It uses the classical uniform crossover and 

mutation operators to produce a new generation. A 

detailed description of the algorithm can be found in 

[17].  

 

3. Results 

The algorithm is applied to a set of observations that 

were taken of the ASTRA 19.2°E cluster. This dataset is 

chosen because it is very similar to the simulated 

datasets used in [17]. If the results differ from those 

found in the previous simulated test scenarios, it will be 

purely because of the difference between simulated and 

real situations.  

Table 1 displays the parameter settings that were 

used by the algorithm. 

 

Table 1. Parameter settings of the EGA. 

Pop. 

size 
pmute pcrossover  % 

copied 
γ Max. 

gens 

2N 1/N 0.5 10 -39 500 

 

 All observations stem from the night of 17-18 

March 2016 and were made by the ZimSMART 

telescope. The attributed values are shown in Figure 1. 

 

An EGA is a stochastic method which means that 

little can be said about its behavior in a deterministic 

way [14]. Therefore we are forced to study the average 

behaviour of the algorithm. Figure 2 shows the 

convergence behaviour of the algorithm. The best 

fitness value per generation is shown for each individual 

run as well as the average best fitness value per 

generation. The plot can be interpreted by considering 

the average best fitness per generation. The lines that 

are formed by the individual runs (in gray) give an 

impression of the uncertainty during the run. This 

uncertainty is significant. In some cases the optimum 

solution is found after just a few generations, and in 

some cases the optimum solution is not found even after 

500 generations.  

 
Fig 1. Attributed values of the observed objects in the 

ASTRA cluster.  

 

 
Fig. 2. Average best fitness value per generation, 

averaged over 100 runs. The results of the individual 

runs is shown in gray.  

 

The average k-matrix over 100 runs is shown in 

Figure 3. The result in Figure 3 shows that the EGA 

works as desired. Even though the uncertainty in the 

best fitness value per generation might suggest a high 

uncertainty in the final solution, the average k-matrix in 

Figure 3 shows that this is not the case. It consistently 

finds four objects, which corresponds to the number of 

objects in the ASTRA 19.2°E cluster [19]. The orbit and 

the RMS of each of the objects is given in Table 2. The 

RMS is calculated with respect to the individual 

observations.  
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Fig 3. Average k-matrix at the end of 500 generations. 

The EGA consistently converges to the same solution. 

 

Table 2. Orbit of each object as determined by the 

OBVIOD method. 

object nr: 1 2 3 4 

a[m] 4.216e7 4.216e7 4.217e7 4.217e7 

e[-] 3.220e-4 5.708e-4 1.967e-4 4.924e-4 

i[deg] 0.040 0.044 0.085 0.091 

Ω[deg] 103.02 56.622 99.620 66.698 

ω[deg] 204.52 -86.36 -48.46 -45.87 

M[deg] -170.56 166.72 85.84 116.20 

RMS[rad] 8.86e-7 1.16e-6 1.08e-6 1.14e-6 

 

Table 2 shows that each object is in a near 

geostationary orbit, which is as expected. The OBVIOD 

method determines an initial orbit. One purpose of this 

initial orbit is to provide a good starting point for an 

orbit improvement. Therefore the difference between 

the OBVIOD solution and a least squares solution 

should be small (i.e. on the order of the observation 

noise) to ensure convergence of the least squares 

method. Figure 4 shows the difference in right 

ascension and declination between the OBVIOD and 

SATORB [20] solutions. SATORB is an in-house 

implementation of a least squares estimator used for 

routine orbit improvements at the AIUB. The least 

squares estimator employs a purely Keplerian model of 

the satellite dynamics. This is done such that the models 

used by OBVIOD and SATORB are the same. The 

uncertainty of a single observation is σob = 1", which 

translates to about 5 ∗ 10−6  [rad]. The difference 

between the two solutions is smaller than this 

uncertainty, therefore the initial orbit provided by the 

OBVIOD method is of sufficient quality. 

 

  

Fig. 4. The difference in right ascension and declination 

between the least squares solution and the OBVIOD 

solution. 

 

In Figures 5 and 6 the residuals with respect to the 

individual observations can be found. They are shown 

for each of the four objects. An important observation to 

make is that all the objects have residuals that are 

consistent to one another. This reinforces the belief that 

the tracklets are correctly associated to each other.   

  

 
Fig. 5. Residual in right ascension for each observation 

and for each object.  

 

In Figure 6 an increase is seen in the residuals of the 

declination for the observations 8-14. This can be 

explained by understanding the workings of the 

OBVIOD method. The OBVIOD method uses the first 

and last tracklets in the orbit determination to define a 

Lambert problem. Since it uses this Lambert problem 

the orbit will always precisely intersect the attributed 

angular positions of the first and last tracklet. Therefore 

the residuals with respect to the individual observations 

in the first and last tracklet are also expected to be 

small. The tracklet that is in between the first and last 
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tracklets is not involved in the definition of the Lambert 

problem, and therefore the residuals might be larger for 

those observations.  

 
Fig. 6. Residuals in declination for each observation and 

for each object. 

 

4. Conclusions 

The goal of this work is to validate that the 

algorithm that is developed in [17] works on real data. 

A dataset containing observations of the ASTRA 19.2°E 

cluster is used for this purpose. The algorithm is able to 

consistently converge to the same solution. This 

solution correctly finds four objects. The orbit of these 

objects are close to geostationary, which is consistent 

with the expected results. Each object has comparable 

residuals which reinforces the belief that the tracklets 

are correctly associated to each other.  

Future work will involve the development and 

implementation of a search space reduction algorithm. 

This algorithm will enable the EGA to converge 

quicker, which allows the EGA to be applied to larger 

datasets (500-1000 tracklets).  
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