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ABSTRACT 

Man-made space debris orbit around the Earth at many 

altitudes in different orbits and many launches add further 

debris to already congested orbits. The ESA GSTP-funded 

Optical In-Situ Monitor project started in 2016 and aims to 

analyze the End-to-End processing pipeline from image 

acquisition to the extracted positions of space debris. A 

camera will take images and an on-board data processor 

will filter and compress the images obtained, which – in 

case of a future Flight Model of the instrument - shall be 

downlinked to the ground station. For the image filtering 

and compression, several algorithms are considered and 

also two different kinds of processors are considered. The 

difficulty of the images is to differentiate between stars in 

the background (which have to be filtered out) and the 

debris. We present a short overview of the project, the 

current status and the algorithm trade-off. 
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1. INTRODUCTION 

The space environment presents a level of radiation which 

is significantly higher than the one encountered on ground 

or even avionic levels, mainly because of galactic cosmic 

rays and different solar phenomenon like the solar flares, 

coronal mass ejection and solar. Some of these particles can 

get through spacecraft shielding and irradiate electronic 

components. This is especially true in the Van Allen belts, 

where some protons and electrons are trapped and can 

induce errors in the behaviour of electronic systems and 

change their behaviour. Single-Event Transient (SET), 

Single-Event Upset (SEU) and Single-Event Functional 

Interrupt (SEFI) are perturbations that can be recovered, but 

the equipment can also receive permanent damage under 

the form of a Single-Event Latch-up (SEL) or a Single-

Event Gate Rupture (SEGR). [1]. 

Human activity in space has brought advances in 

communications, security, earth observation, space 

exploration and other fields of science, but at the same time 

has contributed to populate earth orbit with human-made 

defunct particles, such as residues from rocket firings, de-

commissioned satellites and its fragments from 

deterioration [2]. Man-made space debris orbit around the 

Earth at many altitudes in different orbits. Collisions and 

some launches add further debris to the already congested 

debris packs. As an example, the ISS has to perform several 

manoeuvers every year to avoid catastrophic collisions with 

space debris flying by. 

The following figure [4] shows how space debris has 

increased in the past decades. 

 

Figure 1 Spatial density of LEO space debris by altitude, 

according to 2011 a NASA report to the United Nations 

Office for Outer Space Affairs 
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Figure 2 Spatial density [5] of space debris by altitude 

according to ESA MASTER-2001, without debris from the 

Chinese ASAT and 2009 collision events 

The ESA-funded IN-SITU project started in 2016 and aims 

at observing and taking pictures from the space debris. This 

study uses previous GSP results and actually aims at test-

bed and bread-boarding to reduce the risk of a future 

mission. The next step of this study would be an 

engineering model and a mission. 

In this mission, a camera will take images and an on-board 

data processor will filter and compress the images obtained, 

which – in case of a future Flight Model of the instrument - 

shall be downlinked to the ground station. For the image 

filtering and compression, several algorithms are 

considered and also two different kinds of processors are 

considered: an XPP-based high-performance data processor 

(HPDP) and Microsemi’s RTG4 FPGA. The difficulty of 

the images is to differentiate between stars in the 

background (which have to be filtered out) and the debris. 

We present a short overview of the project, the current 

status and the algorithm trade-off. 

This article is organized in the following way: Chapter 2 

gives an overall view of the IN-SITU project. Chapter 3 

describes the candidate processors for the image 

processing. Chapter 4 describes the algorithms currently 

being considered for streak detection with some simulation 

results. Chapter 4 presents the conclusions reached so far. 

2. IN-SITU Mission 

ESA started in 2013 the study "Assessment Study for Space 

Based Space Surveillance Demonstration Mission (Phase 

A)" with the goal to analyse the feasibility of an optical 

space-based space surveillance (SBSS) demonstration 

mission and to consolidate the design approach. The SBSS 

Demonstrator instrument was originally designed to be 

compatible with existing microsatellite platforms for a 

dedicated mission. The next step was IN-SITU. 

The breadboard software will have the structure of a 

processing chain, where the main parts are: Segmentation, 

Object recognition, Astrometry and Photometry, Tracklet 

building. 

In the segmentation part all image objects (stars, moving 

objects and cosmic rays) are identified by defining a 

threshold value depending on the background, and the 

pixels values over the threshold are selected. In the space-

based scenario, since the observed objects have high 

angular velocities the streaks are very faint and long on the 

frames, with a small signal-to-noise ratio (SNR ~ 1) at the 

single pixel level. The difficulty here is to find an algorithm 

able to distinguish the faint streaks from the background. 

Different algorithms have been proposed for the 

segmentation purpose, based on various image analysis 

methods, such as spatial and temporal filtering and 

convolution, local or regional averaging, gradient-based 

methods, region-based methods, contour methods, and 

different image transforms (e.g. FFT). 

In the object recognition part, the moving objects are 

identified and separated from the stars or other artefacts. 

The identification phase implies finding all pixels belonging 

to the same object, which is difficult when the streak is non-

uniform, or overlaps stars and other streaks. The 

discrimination of moving objects from stars can be 

performed either on single frames on the basis of the 

different morphology of the object and the star images 

(trails vs. round images; known lengths and orientation of 

star images) or by comparing their positions on consecutive 

frames (i.e. during the tracklet linking step). In case that the 

object’s angular velocity on the image is similar to the stars 

angular velocities only the second method is applicable. 

None of the object discrimination algorithms currently used 

has been optimized for on-board processing applications. 

After the identification, the exact position of the object 

needs to be determined (centroiding). This takes the 

identified objects pixel into account and makes use of 

brightness and shape of the object structure. 

An important step in the reduction of the observations of 

any object is the determination of its position (e.g., α and δ) 

in a celestial reference frame. This reduction consists in 

essence of the determination of parameters of a 

transformation between the reference frame on the celestial 

sphere and the coordinate system in the focal plane 

(mapping model). Apart from the projection of the sphere 

onto a plane this transformation contains all kinds of 

distortions generated by the telescope optics, as well as 

characteristics of the ‘measurement system’ of the detector. 

The astrometric reduction uses the celestial coordinates of 

astrometric reference stars together with the measured 

positions on the CCDs of the same stars to determine the 

transformation parameters. In the photometry the magnitude 

of the observed object is determined according to 

photometric reference stars. 

In tracklet building, the observations of the same moving 

object on different frames are grouped together forming a 

so-called tracklet. The usual algorithms try to associate the 

observations based on the velocity and direction of the 

object in the frame coordinates. In the case of three 

observations, for example, the velocity and direction 

extracted from two observations can be used to associate a 

third observation, assuming that they are approximately 

constant over the short interval between three consecutive 

frames. This step indirectly also acts as a filter for the 

cosmics still present after the object recognition phase, 

since the cosmic events are randomly distributed and in 

general not aligned. 

3. CANDIDATE PROCESSORS 

The on-board processing functions will focus on the 

payload image processing in order to reduce the data 

volume (image segmentation for streak detection). 



These on-board image processing requirements are 

challenging in terms of on-board processing performance. 

First assessments of the on-board functionality show an 

input data rate of ca. 100Mbps and a required integer 

processing rate of at least 5GOPS with at least 16bit 

accuracy. Baseline for this assessment is a frame rate of one 

per second 2Kx2K image and a feature detection algorithm 

for data reduction. A buffer memory of 128Mbyte must be 

envisaged for intermediate storage of the image during the 

processing steps. Power Consumption for the processing 

part should not exceed 20W. 

The suitable technologies for the processing units can be 

summarised into three different categories: General Purpose 

Processors/DSPs, FPGAs/ASICs and Specialised 

Processing Units. GPPs, and also in part Digital Signal 

Processors (DSP), provide the easiest development 

environment and highest developer productivity but the 

throughput rate is rather low compared to FPGA or 

Specialised Processing Units and the power consumption 

relatively high. FPGAs are mass produced devices 

containing numerous look-up tables and other elements 

interlinked by configurable interconnects. This approach is 

less efficient than ASICs since there will inevitably be 

unused elements of the FPGA, however it offers greatly 

enhanced flexibility. combine multiple cores with different 

characteristics to allow efficient mapping of algorithms with 

high processing demand. Most of these SPUs are essentially 

an array of processing elements with efficient access to 

memory. The increased specialization makes them more 

efficient but more difficult to program. The proposed 

HPDP falls into this latter category. 

3.1 HPDP [6] 

The HPDP, based on the XPP-III Core by PACT XPP 

Technologies is a radiation hardened, reprogrammable 

array processor, a 16 bit architecture designed in 65 nm 

STM C65SPACE technology. The main component of the 

XPP-III Core represents a dataflow array, consisting of 

two-dimensionally arranged Processing Array Elements 

(PAEs), connected by a communication infrastructure that 

can be reconfigured at runtime, as well as the operations 

performed by each PAE. 

The XPP core architecture is modular in nature and consists 

of a number of reconfigurable Processing Array Elements 

(PAEs) connected by a reconfigurable data and event 

network. Two types of PAEs exist: a RAM-PAE and an 

ALU-PAE. The vertical data and event routing channels are 

always contained within a PAE, in the form of Forward 

Registers (FREGs) that route vertically from top to bottom, 

and Backward Registers (BREGs) that route vertically from 

bottom to top. 

The array network is enhanced by VLIW-type processors 

called Function-PAEs (FNCs), which are used for 

controlling and configuring the network and execution of 

control type processing. 

The following figure shows the block diagram of this core 

architecture. 

 

Figure 3 XPP core architecture, used for HPDP 

 

3.2 Microsemi’s RTG4 FPGA  

Microsemi's RTG4 device is the fourth generation of flash 

based FPGAs, designed for applications in space. The 

number of logic gates, registers and specialised multiplier 

blocks is significantly higher as in the current generation of 

FPGAs. Therefore the device is announced to be suitable 

for signal processing tasks in satellite applications. Airbus 

DS in Ottobrunn evaluates this device using an evaluation 

board from Microsemi by porting one of their GNSS 

applications onto the technology. The GNSS application 

contains the signal processing functions suitable to assess 

the technology for this kind of purposes. 

A block diagram of the device is depicted in the following 

figure: 

 

Figure 4 RTG4 device block diagram [7] 

 

4. CANDIDATE ALGORITHM 

4.1 Boundary Tensor [1] 

The boundary tensor [8] is a symmetric and positive semi 

definite tensor. Its non-negative eigenvalues are defined by: 

        (1) 



With the tensor being  

   (2) 

These eigenvalues represent the variations in the pixel 

intensity in the direction of their orthogonal eigenvectors. 

In other words, the boundary tensor analyses the area 

around the processed pixel, and provides a local base 

showing the direction of the intensity variation, and the 

strength of the variation. As such, if λ1 and λ2 are both null 

it means that the area of the picture has pixels of constant 

intensity. If λ1 is strictly positive and λ2 is null (λ1 ≥ λ2) by 

definition) then the pixel intensity is only changing in the 

direction given by the eigenvector associated to λ1: an edge 

is detected. If λ1 and λ2 are both not null, it means that pixel 

intensity changes in all the directions in the area of the 

picture: a corner is detected. 

To build the boundary tensor, a set of polar separable polar 

filters is applied to the picture which is to be analysed. 

These filters are defined as the product of an angular and a 

radial function in order to optimize its frequency behaviour. 

It will also help getting the invariance to rotations. The first 

step in applying the filters to the picture is done by 

convoluting the picture with each filter row-like, according 

to the following equation. I(x,y) is the intensity of the pixel 

at the coordinate (x,y) and Ki are the coefficients of the 

filter: 

            (3) 

 

In practice, the filter coefficients are taken equal to zero 

outside a radius r. r = 4 will be the used value, as it 

represents a good compromise between complexity and 

precision. 

The result of the row-like convolution is then again 

convoluted with the filters, but this time column-like. For 

the algorithm, the kernels were chosen equal to those taken 

by Diego Andrés Suárez Trujillo in his implementation of 

the algorithm on a HPDP. 

After having simulated several algorithms on the HPDP 

(compression, boundary tensor, and communications) 

Airbus can point out which algorithms are most appropriate 

for its architecture. This architecture, commonly used in 

space applications, is especially performant with loops, as 

these are processed in parallel. However, sequential 

programs are executed slowly. In contrast, a typical PC-

architecture (i.e. programmed in C) is slow for loops, as 

they cannot be executed in parallel, but very fast for 

sequential execution. 

There is a hardware limitation that for the HPDP data types 

should be preferably 16 bit fixed point arithmetic, which 

can be interpreted as using “short integers” instead of 

“reals” in C. For the on-board image processing S/W 

module, this fact must be considered when choosing the 

corresponding algorithms for feature detection and filtering. 

Floating point could be emulated on on-board H/W, but 

with high degradation of performance. 

The boundary tensor can be split in the odd energy which 

accumulates in the step edges and in the even energy which 

accumulates in the roof edges. The boundary tensor is 

finally calculated by adding the odd and even energy, which 

is equivalent to adding Todd and Teven. 

The final step of the algorithm is to determine if a pixel 

corresponds to a RSO or not. In order to do so, it is 

necessary to extract from the boundary tensor a measure of 

the probability of the pixel being an edge. The tensor trace 

is actually the energy contained in the edges (it is the sum 

of the eigenvalues of the tensor). 

 

Figure 5 Description of the architecture of the boundary 

tensor algorithm 

The final results are combined to calculate the diagonal 

coefficients of the boundary tensor, then its trace. The final 

step is applying a thresholding, to get a binary picture in 

which the pixels set to 1 are debris. 

4.2 Differences method [9] 

The basic idea is to compare two frames to detect the 

changing features. The registration (alignment, rotation and 

scale transformations) between the two frames is critical to 

perform a comparison well enough. Usual image treatment 

tools are used in post-processing manner and allow 

transformation at a sub pixel level. The following 

assumptions are made: 

1. Alignment at the pixel level (integer displacement 

vectors) with an afterwards binning. 

2. Rotation and scale transformations can be approximated 

as a number of displacement vectors on an equal number of 

subframes (called cells in the following paragraphs). 

3. Selection of the features and their surrounding can be 

made on the base of the binned pixels. 



For the complete on-board segmentation the following steps 

are suggested. 

1. Remove the saturated stars. 

2. Find the brightest non-saturated stars. 

3. Divide the whole frame in (5 by 5) cells and estimate the 

displacement vector for each of them. 

4. Execute a binning on two frames taking into account the 

displacement vectors. 

5. Subtract the two frames. 

6. The big pixels over (under) a threshold are selected as 

potential streak of the frame A(B). 

 

Figure 6 Original simulated frames. SNR of streaks are 1.5 

and 4 in this frame A 

 

Figure 7 Output of the differences method where input was 

Figure 6 

 

 

Figure 8 Original simulated frames. SNR of streaks are 1.2 

and 6 in this frame B 

  

Figure 9 Output of the differences method where input was 

Figure 8 

 

4.3 Algorithm trade-off 

To be able to test the way the architecture works, a 

Simulink block has been made. 



 

Figure 10 Input picture provided by AIUB 

Only a part of this picture was selected in order to get a 

2048 by 2048 frame, as required (this picture is visible in 

Figure 6). The Simulink model was launched, and its output 

signal was used to build the binary output of the processed 

picture, visible on the figure below. 

 

 

Figure 11 Result obtained by the RTG4 boundary 

implementation 

A zoom on the picture shows that a little bit of noise passes 

as debris, like the dot of figure 9, which does not seem to be 

a RSO. 

 

 

Figure 12 Zoom into the input picture 

 

Figure 13 Zoom into the output picture 

 

Figure 14 Debris detected by both architectures 

Some small differences can be observed between the two 

results. After an analysis of the dataflow of the two 

architecture, it has been noted that the one on the HPDP 

had to scale up the kernel coefficients with a multiplying 

factor in order to make them bigger than 1. The RTG4 

architecture uses fractional length to deal with this problem. 

This difference means that even if the kernel coefficients 

sent to the two implementations were the same, the one 

truly used were slightly different. The kernels used by the 

HPDP simulation must make the architecture a little bit 

more sensible, as it seems to detect a little bit more debris, 



but also gets a little bit more noise. As a conclusion, the two 

architectures are comparable in term of output results; the 

only difference is that the HPDP version changes the kernel 

coefficients and the threshold value while scaling them up. 

 

Concerning the time needed to process a picture, the HPDP 

implementation needs 0.734s, while the RTG4 only needs 

0.06s, which is much faster than the requirement of 1s for 

the In-Situ project. The difference in timing between the 

two implementations can be explained by the fact the FPGA 

can process all the convolutions at the same time, as well as 

the calculus of the output, without needing to write any data 

in an external memory, unlike the HPDP. 

 

5. CONCLUSION 

We have presented both the space debris problem and the 

IN-SITU mission. Also, the two architectures currently 

considered for the image processing and the algorithms 

considered: the boundary tensor and the differences 

method. The RTG4 implementation of the boundary tensor 

has results which match those attained with the HPDP, with 

the small problem of the scaling of the kernel coefficients 

and the threshold value. Thus, the two implementations 

need different parameters in order to achieve the exact same 

results, but they both work the same intended way. The 

project will now test the suitability and performance of the 

differences method in order to decide which combination of 

processor-algorithm is the most suitable for the mission. 
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