
Streak Detection for Space Debris observation

Gerard Vives Vallduriola

(1)
, Diego Andrés Suárez Trujillo

(1)
, Tim Helfers

(1)
, Damien Daens

(1)
, Dr. Jens Utzmann (2)

Jean-Noel Pittet (3), Nicolas Lièvre (4)
(1)

 gerard.vives@airbus.com, diego.suarez.external@airbus.com, tim.helfers@airbus.com, damien.daens@airbus.com.

Airbus DS GmbH. Robert-Koch-Str.1, D-82024 Taufkirchen
(2)

 jens.utzmann@airbus.com. Airbus DS GmbH. Claude-Dornier-Str., D-88090 Immenstaad
(3)

 jean-noel.pittet@aiub.unibe.ch. Astronomical Institute of the University of Bern (AIUB) Sidlerstr. 5, CH-3012 Bern
(4)

 Nicolas.lievre@micos.ch. Micos Engineering GmbH. Überlandstr. 129, CH-8600 Dübendorf

ABSTRACT

Man-made space debris orbit around the Earth at many

altitudes in different orbits and many launches add further

debris to already congested orbits. The ESA GSTP-funded

Optical In-Situ Monitor project started in 2016 and aims to

analyze the End-to-End processing pipeline from image

acquisition to the extracted positions of space debris. A

camera will take images and an on-board data processor

will filter and compress the images obtained, which – in

case of a future Flight Model of the instrument - shall be

downlinked to the ground station. For the image filtering

and compression, several algorithms are considered and

also two different kinds of processors are considered. The

difficulty of the images is to differentiate between stars in

the background (which have to be filtered out) and the

debris. We present a short overview of the project, the

current status and the algorithm trade-off.

Keywords

Space debris, High Performance, Reliable hardware,

reprogrammable hardware and in-orbit flexibility, boundary

tensor, FPGA RTG4, differences method.

1. INTRODUCTION

The space environment presents a level of radiation which

is significantly higher than the one encountered on ground

or even avionic levels, mainly because of galactic cosmic

rays and different solar phenomenon like the solar flares,

coronal mass ejection and solar. Some of these particles can

get through spacecraft shielding and irradiate electronic

components. This is especially true in the Van Allen belts,

where some protons and electrons are trapped and can

induce errors in the behaviour of electronic systems and

change their behaviour. Single-Event Transient (SET),

Single-Event Upset (SEU) and Single-Event Functional

Interrupt (SEFI) are perturbations that can be recovered, but

the equipment can also receive permanent damage under

the form of a Single-Event Latch-up (SEL) or a Single-

Event Gate Rupture (SEGR). [1].

Human activity in space has brought advances in

communications, security, earth observation, space

exploration and other fields of science, but at the same time

has contributed to populate earth orbit with human-made

defunct particles, such as residues from rocket firings, de-

commissioned satellites and its fragments from

deterioration [2]. Man-made space debris orbit around the

Earth at many altitudes in different orbits. Collisions and

some launches add further debris to the already congested

debris packs. As an example, the ISS has to perform several

manoeuvers every year to avoid catastrophic collisions with

space debris flying by.

The following figure [4] shows how space debris has

increased in the past decades.

Figure 1 Spatial density of LEO space debris by altitude,

according to 2011 a NASA report to the United Nations

Office for Outer Space Affairs

mailto:gerard.vives@airbus.com
mailto:diego.suarez.external@airbus.com
mailto:tim.helfers@airbus.com
mailto:damien.daens@airbus.com
mailto:jens.utzmann@airbus.com
mailto:jean-noel.pittet@aiub.unibe.ch
mailto:Nicolas.lievre@micos.ch
https://en.wikipedia.org/wiki/United_Nations_Office_for_Outer_Space_Affairs
https://en.wikipedia.org/wiki/United_Nations_Office_for_Outer_Space_Affairs

Figure 2 Spatial density [5] of space debris by altitude

according to ESA MASTER-2001, without debris from the

Chinese ASAT and 2009 collision events

The ESA-funded IN-SITU project started in 2016 and aims

at observing and taking pictures from the space debris. This

study uses previous GSP results and actually aims at test-

bed and bread-boarding to reduce the risk of a future

mission. The next step of this study would be an

engineering model and a mission.

In this mission, a camera will take images and an on-board

data processor will filter and compress the images obtained,

which – in case of a future Flight Model of the instrument -

shall be downlinked to the ground station. For the image

filtering and compression, several algorithms are

considered and also two different kinds of processors are

considered: an XPP-based high-performance data processor

(HPDP) and Microsemi’s RTG4 FPGA. The difficulty of

the images is to differentiate between stars in the

background (which have to be filtered out) and the debris.

We present a short overview of the project, the current

status and the algorithm trade-off.

This article is organized in the following way: Chapter 2

gives an overall view of the IN-SITU project. Chapter 3

describes the candidate processors for the image

processing. Chapter 4 describes the algorithms currently

being considered for streak detection with some simulation

results. Chapter 4 presents the conclusions reached so far.

2. IN-SITU Mission

ESA started in 2013 the study "Assessment Study for Space

Based Space Surveillance Demonstration Mission (Phase

A)" with the goal to analyse the feasibility of an optical

space-based space surveillance (SBSS) demonstration

mission and to consolidate the design approach. The SBSS

Demonstrator instrument was originally designed to be

compatible with existing microsatellite platforms for a

dedicated mission. The next step was IN-SITU.

The breadboard software will have the structure of a

processing chain, where the main parts are: Segmentation,

Object recognition, Astrometry and Photometry, Tracklet

building.

In the segmentation part all image objects (stars, moving

objects and cosmic rays) are identified by defining a

threshold value depending on the background, and the

pixels values over the threshold are selected. In the space-

based scenario, since the observed objects have high

angular velocities the streaks are very faint and long on the

frames, with a small signal-to-noise ratio (SNR ~ 1) at the

single pixel level. The difficulty here is to find an algorithm

able to distinguish the faint streaks from the background.

Different algorithms have been proposed for the

segmentation purpose, based on various image analysis

methods, such as spatial and temporal filtering and

convolution, local or regional averaging, gradient-based

methods, region-based methods, contour methods, and

different image transforms (e.g. FFT).

In the object recognition part, the moving objects are

identified and separated from the stars or other artefacts.

The identification phase implies finding all pixels belonging

to the same object, which is difficult when the streak is non-

uniform, or overlaps stars and other streaks. The

discrimination of moving objects from stars can be

performed either on single frames on the basis of the

different morphology of the object and the star images

(trails vs. round images; known lengths and orientation of

star images) or by comparing their positions on consecutive

frames (i.e. during the tracklet linking step). In case that the

object’s angular velocity on the image is similar to the stars

angular velocities only the second method is applicable.

None of the object discrimination algorithms currently used

has been optimized for on-board processing applications.

After the identification, the exact position of the object

needs to be determined (centroiding). This takes the

identified objects pixel into account and makes use of

brightness and shape of the object structure.

An important step in the reduction of the observations of

any object is the determination of its position (e.g., α and δ)

in a celestial reference frame. This reduction consists in

essence of the determination of parameters of a

transformation between the reference frame on the celestial

sphere and the coordinate system in the focal plane

(mapping model). Apart from the projection of the sphere

onto a plane this transformation contains all kinds of

distortions generated by the telescope optics, as well as

characteristics of the ‘measurement system’ of the detector.

The astrometric reduction uses the celestial coordinates of

astrometric reference stars together with the measured

positions on the CCDs of the same stars to determine the

transformation parameters. In the photometry the magnitude

of the observed object is determined according to

photometric reference stars.

In tracklet building, the observations of the same moving

object on different frames are grouped together forming a

so-called tracklet. The usual algorithms try to associate the

observations based on the velocity and direction of the

object in the frame coordinates. In the case of three

observations, for example, the velocity and direction

extracted from two observations can be used to associate a

third observation, assuming that they are approximately

constant over the short interval between three consecutive

frames. This step indirectly also acts as a filter for the

cosmics still present after the object recognition phase,

since the cosmic events are randomly distributed and in

general not aligned.

3. CANDIDATE PROCESSORS

The on-board processing functions will focus on the

payload image processing in order to reduce the data

volume (image segmentation for streak detection).

These on-board image processing requirements are

challenging in terms of on-board processing performance.

First assessments of the on-board functionality show an

input data rate of ca. 100Mbps and a required integer

processing rate of at least 5GOPS with at least 16bit

accuracy. Baseline for this assessment is a frame rate of one

per second 2Kx2K image and a feature detection algorithm

for data reduction. A buffer memory of 128Mbyte must be

envisaged for intermediate storage of the image during the

processing steps. Power Consumption for the processing

part should not exceed 20W.

The suitable technologies for the processing units can be

summarised into three different categories: General Purpose

Processors/DSPs, FPGAs/ASICs and Specialised

Processing Units. GPPs, and also in part Digital Signal

Processors (DSP), provide the easiest development

environment and highest developer productivity but the

throughput rate is rather low compared to FPGA or

Specialised Processing Units and the power consumption

relatively high. FPGAs are mass produced devices

containing numerous look-up tables and other elements

interlinked by configurable interconnects. This approach is

less efficient than ASICs since there will inevitably be

unused elements of the FPGA, however it offers greatly

enhanced flexibility. combine multiple cores with different

characteristics to allow efficient mapping of algorithms with

high processing demand. Most of these SPUs are essentially

an array of processing elements with efficient access to

memory. The increased specialization makes them more

efficient but more difficult to program. The proposed

HPDP falls into this latter category.

3.1 HPDP [6]

The HPDP, based on the XPP-III Core by PACT XPP

Technologies is a radiation hardened, reprogrammable

array processor, a 16 bit architecture designed in 65 nm

STM C65SPACE technology. The main component of the

XPP-III Core represents a dataflow array, consisting of

two-dimensionally arranged Processing Array Elements

(PAEs), connected by a communication infrastructure that

can be reconfigured at runtime, as well as the operations

performed by each PAE.

The XPP core architecture is modular in nature and consists

of a number of reconfigurable Processing Array Elements

(PAEs) connected by a reconfigurable data and event

network. Two types of PAEs exist: a RAM-PAE and an

ALU-PAE. The vertical data and event routing channels are

always contained within a PAE, in the form of Forward

Registers (FREGs) that route vertically from top to bottom,

and Backward Registers (BREGs) that route vertically from

bottom to top.

The array network is enhanced by VLIW-type processors

called Function-PAEs (FNCs), which are used for

controlling and configuring the network and execution of

control type processing.

The following figure shows the block diagram of this core

architecture.

Figure 3 XPP core architecture, used for HPDP

3.2 Microsemi’s RTG4 FPGA

Microsemi's RTG4 device is the fourth generation of flash

based FPGAs, designed for applications in space. The

number of logic gates, registers and specialised multiplier

blocks is significantly higher as in the current generation of

FPGAs. Therefore the device is announced to be suitable

for signal processing tasks in satellite applications. Airbus

DS in Ottobrunn evaluates this device using an evaluation

board from Microsemi by porting one of their GNSS

applications onto the technology. The GNSS application

contains the signal processing functions suitable to assess

the technology for this kind of purposes.

A block diagram of the device is depicted in the following

figure:

Figure 4 RTG4 device block diagram [7]

4. CANDIDATE ALGORITHM

4.1 Boundary Tensor [1]

The boundary tensor [8] is a symmetric and positive semi

definite tensor. Its non-negative eigenvalues are defined by:

 (1)

With the tensor being

 (2)

These eigenvalues represent the variations in the pixel

intensity in the direction of their orthogonal eigenvectors.

In other words, the boundary tensor analyses the area

around the processed pixel, and provides a local base

showing the direction of the intensity variation, and the

strength of the variation. As such, if λ1 and λ2 are both null

it means that the area of the picture has pixels of constant

intensity. If λ1 is strictly positive and λ2 is null (λ1 ≥ λ2) by

definition) then the pixel intensity is only changing in the

direction given by the eigenvector associated to λ1: an edge

is detected. If λ1 and λ2 are both not null, it means that pixel

intensity changes in all the directions in the area of the

picture: a corner is detected.

To build the boundary tensor, a set of polar separable polar

filters is applied to the picture which is to be analysed.

These filters are defined as the product of an angular and a

radial function in order to optimize its frequency behaviour.

It will also help getting the invariance to rotations. The first

step in applying the filters to the picture is done by

convoluting the picture with each filter row-like, according

to the following equation. I(x,y) is the intensity of the pixel

at the coordinate (x,y) and Ki are the coefficients of the

filter:

 (3)

In practice, the filter coefficients are taken equal to zero

outside a radius r. r = 4 will be the used value, as it

represents a good compromise between complexity and

precision.

The result of the row-like convolution is then again

convoluted with the filters, but this time column-like. For

the algorithm, the kernels were chosen equal to those taken

by Diego Andrés Suárez Trujillo in his implementation of

the algorithm on a HPDP.

After having simulated several algorithms on the HPDP

(compression, boundary tensor, and communications)

Airbus can point out which algorithms are most appropriate

for its architecture. This architecture, commonly used in

space applications, is especially performant with loops, as

these are processed in parallel. However, sequential

programs are executed slowly. In contrast, a typical PC-

architecture (i.e. programmed in C) is slow for loops, as

they cannot be executed in parallel, but very fast for

sequential execution.

There is a hardware limitation that for the HPDP data types

should be preferably 16 bit fixed point arithmetic, which

can be interpreted as using “short integers” instead of

“reals” in C. For the on-board image processing S/W

module, this fact must be considered when choosing the

corresponding algorithms for feature detection and filtering.

Floating point could be emulated on on-board H/W, but

with high degradation of performance.

The boundary tensor can be split in the odd energy which

accumulates in the step edges and in the even energy which

accumulates in the roof edges. The boundary tensor is

finally calculated by adding the odd and even energy, which

is equivalent to adding Todd and Teven.

The final step of the algorithm is to determine if a pixel

corresponds to a RSO or not. In order to do so, it is

necessary to extract from the boundary tensor a measure of

the probability of the pixel being an edge. The tensor trace

is actually the energy contained in the edges (it is the sum

of the eigenvalues of the tensor).

Figure 5 Description of the architecture of the boundary

tensor algorithm

The final results are combined to calculate the diagonal

coefficients of the boundary tensor, then its trace. The final

step is applying a thresholding, to get a binary picture in

which the pixels set to 1 are debris.

4.2 Differences method [9]

The basic idea is to compare two frames to detect the

changing features. The registration (alignment, rotation and

scale transformations) between the two frames is critical to

perform a comparison well enough. Usual image treatment

tools are used in post-processing manner and allow

transformation at a sub pixel level. The following

assumptions are made:

1. Alignment at the pixel level (integer displacement

vectors) with an afterwards binning.

2. Rotation and scale transformations can be approximated

as a number of displacement vectors on an equal number of

subframes (called cells in the following paragraphs).

3. Selection of the features and their surrounding can be

made on the base of the binned pixels.

For the complete on-board segmentation the following steps

are suggested.

1. Remove the saturated stars.

2. Find the brightest non-saturated stars.

3. Divide the whole frame in (5 by 5) cells and estimate the

displacement vector for each of them.

4. Execute a binning on two frames taking into account the

displacement vectors.

5. Subtract the two frames.

6. The big pixels over (under) a threshold are selected as

potential streak of the frame A(B).

Figure 6 Original simulated frames. SNR of streaks are 1.5

and 4 in this frame A

Figure 7 Output of the differences method where input was

Figure 6

Figure 8 Original simulated frames. SNR of streaks are 1.2

and 6 in this frame B

Figure 9 Output of the differences method where input was

Figure 8

4.3 Algorithm trade-off

To be able to test the way the architecture works, a

Simulink block has been made.

Figure 10 Input picture provided by AIUB

Only a part of this picture was selected in order to get a

2048 by 2048 frame, as required (this picture is visible in

Figure 6). The Simulink model was launched, and its output

signal was used to build the binary output of the processed

picture, visible on the figure below.

Figure 11 Result obtained by the RTG4 boundary

implementation

A zoom on the picture shows that a little bit of noise passes

as debris, like the dot of figure 9, which does not seem to be

a RSO.

Figure 12 Zoom into the input picture

Figure 13 Zoom into the output picture

Figure 14 Debris detected by both architectures

Some small differences can be observed between the two

results. After an analysis of the dataflow of the two

architecture, it has been noted that the one on the HPDP

had to scale up the kernel coefficients with a multiplying

factor in order to make them bigger than 1. The RTG4

architecture uses fractional length to deal with this problem.

This difference means that even if the kernel coefficients

sent to the two implementations were the same, the one

truly used were slightly different. The kernels used by the

HPDP simulation must make the architecture a little bit

more sensible, as it seems to detect a little bit more debris,

but also gets a little bit more noise. As a conclusion, the two

architectures are comparable in term of output results; the

only difference is that the HPDP version changes the kernel

coefficients and the threshold value while scaling them up.

Concerning the time needed to process a picture, the HPDP

implementation needs 0.734s, while the RTG4 only needs

0.06s, which is much faster than the requirement of 1s for

the In-Situ project. The difference in timing between the

two implementations can be explained by the fact the FPGA

can process all the convolutions at the same time, as well as

the calculus of the output, without needing to write any data

in an external memory, unlike the HPDP.

5. CONCLUSION

We have presented both the space debris problem and the

IN-SITU mission. Also, the two architectures currently

considered for the image processing and the algorithms

considered: the boundary tensor and the differences

method. The RTG4 implementation of the boundary tensor

has results which match those attained with the HPDP, with

the small problem of the scaling of the kernel coefficients

and the threshold value. Thus, the two implementations

need different parameters in order to achieve the exact same

results, but they both work the same intended way. The

project will now test the suitability and performance of the

differences method in order to decide which combination of

processor-algorithm is the most suitable for the mission.

6. REFERENCES

1. Daëns, D. (2016). Feature Detection on new Space

FPGA Technology. Master Thesis. Airbus DS GmbH.

2. Klinkrad, H. (2006). Space Debris: Models and Risk

Analysis. Springer-Verlag Berlin, 1 Ed.

3. Utzmann, J., Ferreira, L., Pittet, J-N., Helfers, T., Vives

Vallduriola, G. et al. (2016). Breadboard Instrument & Test

Set-Up Architecture Design Report. IN-SITU_ADR iss. 1,

rev. 0. Airbus DS GmbH.

4. Public Domain,

https://commons.wikimedia.org/w/index.php?curid=305986

07

5. Public Domain,

https://commons.wikimedia.org/wiki/File:Spacedebris_smal

l.png

6. http://www.pactxpp.com

7 http://www.microsemi.com

8. Köthe, U. Integrated Edge and Junction Detection with

the Boundary Tensor.

9. Pittet, J-N. (2016). Design & Specification Report SW.

IN-SITU DD-0007c.v1.0.AIUB.

7. ACKNOWLEDGEMENTS

We hereby acknowledge and say thank you to both the ESA

and ESOC for their support in the IN-SITU project and its

predecessor SBSS. We also want to thank AIUB for

allowing us to publish the original images used during

simulations.

Project IN-SITU is funded by ESA contract Nr.

4000116518/16/D/SR.

http://www.microsemi.com/

