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Currently several thousands of objects are being tracked in the MEO and GEO regions through optical means. 

The problem faced in this framework is that of Multiple Target Tracking (MTT). In this context both, the correct 

associations among the observations and the orbits of the objects have to be determined. The complexity of the MTT 

problem is defined by its dimension S. The number S corresponds to the number of fences involved in the problem. 

Each fence consists of a set of observations where each observation belongs to a different object. The S ≥ 3 MTT 

problem is an NP-hard combinatorial optimization problem. There are two general ways to solve this. One way is to 

seek the optimum solution, this can be achieved by applying a branch-and-bound algorithm. When using these 

algorithms the problem has to be greatly simplified to keep the computational cost at a reasonable level. Another 

option is to approximate the solution by using meta-heuristic methods. These methods aim to efficiently explore the 

different possible combinations so that a reasonable result can be obtained with a reasonable computational effort. To 

this end several population-based meta-heuristic methods are implemented and tested on simulated optical 

measurements. With the advent of improved sensors and a heightened interest in the problem of space debris, it is 

expected that the number of tracked objects will grow by an order of magnitude in the near future. This research aims 

to provide a method that can treat the correlation and orbit determination problems simultaneously, and is able to 

efficiently process large data sets with minimal manual intervention. 

 

I. INTRODUCTION 

Cataloging Space Debris can be put in the more 

general framework of Multiple Target Tracking. The 

MTT problem can be summarized as follows. A region 

contains any number of target objects of which the 

states are unknown. Starting from a set of S fences 

(a.k.a. scans/layers, depending on the domain of 

application) collected by any number of sensors, both 

the total number of targets and their states have to be 

estimated. A fence consists of a set of observations that 

all originate from different targets. The observables 

depend on the sensor type. In this case only optical 

sensors are considered, these provide Right Ascension α 

and Declination δ values. The fields where MTT 

problems are encountered are numerous; examples are 

the tracking of targets in a military context, and the 

tracking of particles resulting from high energy 

collisions in particle physics.  

An inherent characteristic of the MTT problem is 

that a single observation is not enough to estimate the 

target state. Therefore the problem consists of two 

interrelated parts, namely data association and state 

estimation. In the data association part the observations 

from the different fences have to be associated to the 

correct targets. The state estimation part then takes these 

associated groups of observations and estimates the 

target state. These parts are related to each other since 

the associations are needed for a state to be estimated. 

This leads to a search for the permutation that results in 

the best target state estimates. The number of fences S 

that are used in the problem correspond to the 

dimension. For a dimension of 𝑆 ≥ 3 the number of 

possible permutations greatly increases and the problem 

becomes NP-hard
1
. Despite its challenges, several 

attempts have been made to solve this problem in an 

efficient manner. The Multiple Hypothesis Tracking 

(MHT) algorithm
23

 seeks to find the optimum solution 

to the MTT problem by employing a branch and bound 

methodology. In order for this algorithm to have a 

realistic computation time the MTT problem has to be 

greatly simplified. Another approach to the problem is 

to seek an approximate solution that can be obtained in 

a realistic computation time (preferably in polynomial 
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time). An example of such an algorithm is the 

Lagrangian relaxation technique
4
.   

The alternative to solving the 𝑆 ≥ 3 problem is to 

solve the 𝑆 = 2 problem. This problem has the 

favorable computational complexity of 𝒪(𝑛2). Recent 

work in this area can be found
5,6,7

. The drawback of this 

approach is that with only pairs of observations the 

information available for the state estimation is 

minimal. This can in turn lead to wrong association 

decisions and state estimates of low quality. The 

severity of these problems depends on the target density 

in the region of interest. So to solve the MTT problem 

applied to a densely populated area an efficient way has 

to be found to search through the possible permutations.  

An algorithm is sought that can overcome the 

pitfalls of an 𝑆 = 2 algorithm, without possessing an 

unfavorable computational complexity. To this end a 

series of Population-Based Meta-Heuristic (PBMH) 

algorithms are proposed. These algorithms are a popular 

choice when faced with a (combinatorial) NP-Hard 

optimization problem. A key feature of a PBMH 

algorithm is that it seeks to improve upon each iteration 

(a.k.a. generation), instead of attempting to formulate 

the optimum solution in one step. Therefore they are 

generally able to find a reasonable approximate solution 

within a relatively short time span. In this work a novel 

method of orbit determination is employed. The new 

orbit determination method is heavily based on the 

previous work done by Siminski
7
 and should be seen as 

an extension to that method allowing for orbits to be 

determined with three or more series of closely spaced 

observations (a.k.a. tracklets).  

The paper is organized as follows. In the next 

section the Optimized Boundary Value Orbit 

Determination (OBVOD) method is presented. In the 

third part the basic workings of each of the PBMH 

algorithms are discussed. The fourth part covers the 

application of the resulting algorithm to three test cases. 

In these test cases the observations are taken from 

simulations of three different scenarios ranging from 

easy to difficult. In the fifth part attention is given to the 

computational complexity of the algorithms. Finally the 

paper is closed with the conclusions that can be drawn 

and the outlook for future research in this area.  

 

 

 

 

 

 

 

 

 

 

 

II. THE OPTIMIZED BOUNDARY VALUE 

ORBIT DETERMINATION (OBVOD) METHOD 

 

In the proposed algorithms there is a need for an 

orbit determination method that can determine an orbit 

for any set of tracklets larger or equal to two. A tracklet 

consists of a series of closely spaced observations, 

typically spaced about 30 seconds apart. A tracklet is 

normally about 4 - 7 observations in length. This 

technique of collecting observations provides a major 

advantage, which is that now also information on the 

angular rates is available. It is assumed that the series of 

observations can be approximated with a straight line. 

By fitting such a line, each tracklet provides us with an 

estimate of the topocentric angular velocity of the 

object. These observables at epoch t are denoted as 

follows: 

 

 (𝛼, 𝛼̇, 𝛿, 𝛿̇)
𝑡
 [1] 

 

Four observables are directly accessible from the 

observations. However an orbit has at least six orbital 

parameters that uniquely define it. Therefore an 

additional two observables are needed. In the method 

developed by Siminski
7
 the angular positions of two 

tracklets were taken. The two additional observables are 

the ranges towards the first and second tracklet. The 

derived angular rates are used to quantify the quality of 

the computed orbit. The range values (𝜌1, 𝜌2) are 

unknown. The method by Siminski
7
 seeks to find the 

(𝜌1, 𝜌2) combination that leads to the best fitting orbit 

w.r.t. the angular rates.  

 

Search for the optimum hypothesis 

In the original method described by [7] the quantity 

in Equation [2] has to be minimized. 

 

 𝐿𝑁=2(𝑘, 𝑝̅) = (𝑧̇ − 𝑧̇̂ )
𝑇

Σ𝑧̇
−1 (𝑧̇ − 𝑧̇̂ ) [2] 

 

Here the z denotes the angular positions, the dot 

accent denotes the first derivative w.r.t. the time and the 

hat accent denotes the computed value. The Σ𝑧̇ denotes 

the covariance matrix which consists of two parts. The 

first part is the 𝐶𝑧̇ matrix which represents the 

uncertainties on the estimated angular rate (which 

comes directly from the tracklets). The second part is 

the 𝐶𝑧̇̂ which contains the uncertainties on the computed 

angular rates. The 𝑘 stands for the number of orbital 

revolutions between the first and second epoch. Finally 

the 𝑝̅ is the hypothesis (𝜌1, 𝜌2). The quantity in 

Equation [2] is also known as the Mahalanobis distance. 

It was shown that for a given 𝑘 the topography of this 

loss function is smooth and contains one unique 

minimum point. Therefore a gradient descent scheme 

can be used to search for the optimum solution (here the 
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Broyden-Fletcher-Goldfarb-Shanno algorithm is used). 

The procedure to evaluate the loss function is simple. 

For a given hypothesis 𝑝̅ two geocentric position 

vectors can be derived. This gives the classical Lambert 

problem, which can be solved to obtain the six orbital 

parameters. This orbit is subsequently used to compute 

the angular rates, these values are then used in Equation 

[2] to evaluate the loss function. This method can treat 

two tracklets at a time, and give an indication of 

whether they might be correlated to each other. By 

exploiting the fact that the Mahalanobis distance is χ2 

distributed, a threshold can be set. If the Mahalanobis 

distance is below that threshold, a decision is made to 

correlate those two tracklets. 

  

The MTT algorithm described in this paper aims to 

approximately solve the 𝑆 ≥ 3 MTT problem. Therefore 

the method needs to be expanded such that it can 

determine the orbit and Mahalanobis distance for more 

than two tracklets. This expansion is straightforward. 

For a set of N number of tracklets, the first and last 

tracklets are used in the search for the optimum range 

hypothesis. The estimated and computed angular rate 

values 𝑧̇ and 𝑧̇̂ respectively of the tracklets in between 

are added to the vectors in Equation [2]. Additionally, 

there is now a group of tracklets that is not involved in 

the Lambert problem. This means that there will be a 

non-zero residual between the observed and computed 

angular positions for those tracklets. Including those 

quantities leads to the loss function in Equation [3] for a 

tracklet set of 𝑆 ≥ 3 in size.  

 

 𝐿𝑁≥3(𝑘, 𝑝̅) = (𝑧̇ − 𝑧̇̂ )
𝑇

Σ𝑧̇
−1 (𝑧̇ − 𝑧̇̂ )

+ (𝑧 − 𝑧̂ )𝑇Σ𝑧
−1 (𝑧 − 𝑧̂ ) 

[3] 

 

An example of the topography of this loss function 

is shown in Figure 1. It can be seen that for a fixed 𝑘 

there is one unique minimum point, and that the 

topography is smooth. Therefore a gradient descent 

algorithm can also be used in this case to minimize the 

quantity in Equation [3]. This quantity is also 𝜒2  
distributed.  

 
Figure 1: The topography of the sum of the Mahalanobis 

distances of the angular positions and rates for a group of 

four tracklets that belong to the same object. 

Bounds on the range hypothesis 

To restrict the search for the best hypothesis (𝜌1, 𝜌2) 

a so-called Admissible Region (AR) is used. The AR 

allows to constrain the (𝜌1, 𝜌2) search space by using 

simple to evaluate relationships between bounds on the 

orbital elements and the topocentric range values. Four 

of the basic bounds are used in this work, they are 

described by Schumacher
5
. The first bound is on the 

minimum and maximum range values. This bound is 

based on the maximum allowed apogee and the 

minimum allowed perigee, each geocentric vector 

should fall within this range. Equation [4] represents the 

allowed range of orbital radii. 

 

 (𝑎min(1 − 𝑒𝑚𝑎𝑥))2 ≤ ‖𝑟̅ ‖

≤ (𝑎𝑚𝑎𝑥   (1 + 𝑒𝑚𝑎𝑥))
2
 

[4] 

 

These bounds on the geocentric vector 𝑟̅ can be 

translated to bounds on the range values through the 

geometric relationship 𝑟̅ =  𝑅̅ + 𝜌𝑢̅. Here 𝑅̅ is the 

geocentric position of the observer and 𝑢̅ is the unit 

vector in the direction of the observation. 

 

The remaining three bounds are implied by 

Lambert's theorem. The first bound is introduced by 

constraining the eccentricity. This relationship is given 

by Equation [5]. 

 

 
0 ≤ 𝑒0 =

|(‖𝑟1̅‖ − ‖𝑟2̅‖)|

‖𝑟2̅ − 𝑟1̅‖
≤ 1 

[5] 

 

In Equation [5] the 𝑒0 denotes the minimum possible 

eccentricity, 𝑟1̅ and 𝑟2̅ are the geocentric positions of the 

object at the epochs of the first and second tracklets 

respectively. The second constraint is given by [6].  

 

 4𝑎0 = ‖𝑟1̅‖ + ‖𝑟2̅‖ + ‖𝑟2̅ − 𝑟1̅‖ [6] 
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Here the 𝑎0 is the minimum semi-major axis 

possible of the orbit that intersects both geocentric 

positions. If 𝑎0 > 𝑎𝑚𝑎𝑥 or 𝑒0 > 𝑒𝑚𝑎𝑥 then the (𝜌1, 𝜌2)  

hypothesis can be rejected. The last constraint is 

imposed on the time of flight. Equation [7] denotes the 

zero energy time of flight, which corresponds to a 

parabolic orbit. Eccentric orbits (negative energy orbits) 

will always have a longer time of flight. Therefore if 

𝑡2 − 𝑡1 < Δ𝑡𝑝  the hypothesis can be rejected.  

 

 

Δ𝑡𝑝 =
4

3
√

𝑎0
3

𝜇
(1 − 𝑠𝜆3) 

[7] 

 

In Equation [7] the 𝜇 is Earth’s gravitational 

constant, 𝑠 is either +1 for the short way trajectories or -

1 for the long way trajectories. The 𝜆 is a function of the 

geocentric positions as shown in Equation [8]. 

 

 
𝜆 =

‖𝑟1̅‖ + ‖𝑟2̅‖ − ‖𝑟2̅ − 𝑟1̅‖

‖𝑟1̅‖ + ‖𝑟2̅‖ + ‖𝑟2̅ − 𝑟1̅‖
≤ 1 

 

[8] 

III. META-HEURISTIC POPULATION-BASED 

(MHPB) ALGORITHMS IN MTT 

 

As mentioned in the introduction, a few meta-

heuristic methods have been investigated within the 

framework of MTT
1
. Examples of these algorithms are 

the Lagrangian relaxation technique
4
 and the GRASP 

algorithm
8
. However, both these methods work with a 

single solution as opposed to a population of solutions.  

The Genetic Algorithm (GA) is a popular MHPB 

algorithm which was conceived in the 1960s
9
. Since 

then the GA has been successfully applied to many 

different (combinatorial) NP-hard problems spread out 

over many different domains. A part of the appeal of the 

GA is its versatility, i.e. its structure does not depend on 

the problem. Since the coming of the GA there have 

been other developments in the field of MHPB 

algorithms. Other algorithms with a high potential are 

the Population Based Incremental Learning (PBIL)
10

 

and the Differential Evolution (DE)
11

 algorithms. Both 

of these algorithms have shown some promise when 

applied to combinatorial optimization problems, such as 

the travelling salesman problem.  

 

Definition of an individual and the fitness function 

An MHPB algorithm works with a population of 

individuals. Each individual represents a potential 

solution and is evaluated to determine its so-called 

fitness. The fitness of an individual is a measure of the 

quality of that solution. In any MHPB there are two 

important design choices. The first choice is how to 

define an individual. This is an important choice since 

the individual has to be able to accurately represent any 

valid solution in the search space. In this work an 

individual represents only the correlations between the 

tracklets. In Equation [9] the general notation for a k-

matrix can be seen. The k-matrix notation was 

introduced in the work of Schneider
12

, where the most 

likely k-matrix was sought through the application of 

Markov Chain Monte Carlo computations.  
 

 

𝐾 =  

1 ⋯ 0
⋮ ⋱ 0

𝑘𝑖,1 … 𝑘𝑖,𝑗

 

[9] 

 

In the k-matrix any entry 𝑘𝑖,𝑗 can only have a value of 1 

or 0. If 𝑘𝑖,𝑗 = 1 it signifies that the tracklet in row i is 

correlated to the object in column j. The k-matrix is 

defined in such a way that the first tracklet is always 

correlated to the first object. Following this logic the k-

matrix becomes a lower triangular matrix. 

 

The second design element is the fitness function. 

This function is used to assign a fitness value to each 

individual. The user is free to choose the fitness 

function as wanted, as long as it fulfils two 

requirements.  

 

 The individual with the best fitness value 

should be the optimal solution 

 An improvement in a solution should lead 

to an improvement in fitness value.  

 

In the fitness function also the external probabilities 

have to be taken into account. These external 

probabilities account for the possibilities that detections 

are missed and that some of the measurements could be 

spurious. When quantifying the total probability that a 

certain group of tracklets belongs together the 

expression in Equation [10] is found. 
 

 𝑃𝑁≥2 = 𝒩(𝑧̇, 𝑧̇̂, Σ𝑧̇)𝒩(𝑧, 𝑧̂ , Σ𝑧) 

(1 − 𝑃𝑑)𝐿−𝑁𝑃𝑑
𝑁(1 − 𝑃𝑓)

𝑁
   

[10] 

 

In Equation [10] the 𝑃𝑑 stands for the detection 

probability, 𝑃𝑓 stands for the false alarm probability, the 

L stands for the total number of fences considered, and 

N stands for the number of tracklets used in the orbit 

determination. When we take the negative log-

likelihood of the above expression, Equation [11] is 

obtained.  
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𝐿𝑁≥2 =  − ln (

1

√(2𝜋)𝑘|Σ𝑧̇|
)

− ln (
1

√(2𝜋)𝑘|Σ𝑧|
)

+
1

2
(𝑧̇ − 𝑧̇̂ )

𝑇
Σ𝑧̇

−1 (𝑧̇ − 𝑧̇̂ )

+
1

2
(𝑧 − 𝑧̂ )𝑇Σ𝑧

−1 (𝑧 − 𝑧̂ )

− (𝐿 − 𝑁) ln(1 − 𝑃𝑑)
− 𝑁ln(𝑃𝑑) − 𝑁ln(1 − 𝑃𝑓)  

[11] 

 

The k in Equation [11] stands for the dimension of 

the vector (either 𝑧̇ or 𝑧). In Equation [11] the two 

Mahalanobis distances can be found. The sum of these 

two distances is what is minimized in the OBVOD 

method. There is a special case of the fitness function. 

This is when only one tracklet is considered. For a 

single tracklet no orbit can be determined (and thus no 

Mahalanobis distances). Therefore we can only quantify 

its probability of being correct by using the detection 

and false alarm probabilities. It can be said that a single 

tracklet belongs to an object that has been missed in all 

the other fences, or it is a false alarm. These two events 

are assumed to be independent from each other, 

therefore their probabilities can be added in order to 

determine the combined probability. Adding these 

probabilities and taking the negative log-likelihood 

gives the expression in Equation [12].  

 

 𝐿𝑁=1 = − ln((1 − 𝑃𝑑)𝐿−1 𝑃𝑑 + 𝑃𝑓) [12] 

 

Equation [12] is currently used in the algorithm. It 

seems to fulfil the requirements of the fitness function 

(which are listed at the start of the section). However 

the definition of the fitness function for 𝑁 = 1 is still a 

point of discussion. Alternative definitions could 

involve setting threshold values (based on e.g. the 𝜒2 

distributions), or an empirical formulation.   

 

III. ALGORITHMS  

 

As mentioned in the introduction, several different 

algorithms are implemented and tested. All algorithms 

work with a population of individuals and use the same 

representation of an individual and the same fitness 

evaluation function. The way in which each algorithm 

uses the information contained within the population is 

where the difference lies. In this chapter each algorithm 

is briefly presented along with several references that 

provide more detailed information on the used methods. 

 

Genetic Algorithm 

The GA is inspired by the selection that occurs in 

nature. A generation of a certain population of 

individuals is evaluated in order to assign a fitness value 

to each individual. Some individuals will have a better 

fitness than others. These individuals then have a higher 

probability to pass on their information to the next 

generation. In Figure 2 the flowchart of a GA can be 

seen. The first step is to create an initial population, this 

is done at random in order to have a good distribution of 

individuals throughout the search space. In the second 

step this random initial population gets evaluated, each 

individual gets a fitness assigned to it based i.a. on the 

quality of the determined orbits. A new population is 

created by applying the two basic GA operators to the 

individuals. The first operator is the crossover operator, 

which works as follows. Two individuals are chosen 

based on their relative fitness. This sampling is done 

according to the discrete probability density function 

that describes the relative fitness of the individuals in 

the population. In this way the relatively fit individuals 

have a higher probability of being chosen for crossover. 

The crossover operator takes the two selected 

individuals and recombines them in order to make two 

new k-matrices. In this work the popular uniform 

crossover operator is used. This version of crossover 

exchanges the rows of the two parent matrices if a 

randomly generated number between zero and one is 

below a certain crossover probability, this has to be 

done for each row in the matrix. The crossover 

probability is defined by the user. Crossover is seen as 

being the exploiting operator in the GA. In order to 

ensure a certain extent of exploration, the mutation 

operator is used. The mutation operator is applied to 

every new individual. Mutation can randomly change an 

individual. Each row can be mutated with a user defined 

mutation probability. The change is applied by 

randomly redefining the column where the '1' occurs, 

effectively assigning the tracklet to another object. The 

two operators are applied until a new population is 

created. This population is evaluated by calculating the 

fitness of each individual. In the classical GA this new 

population will replace the entire former population. 

Therefore the GA does not necessarily improve its 

solution from one generation to the next; it can also 

discard the best solution so far and only be able to 

formulate a solution of worse quality. A simple 

variation on the standard GA exists which is called the 

Elitist Genetic Algorithm (EGA). Here the top few 

percentage of the population is always copied to the 

next population, this ensures that the information 

contained within the best individuals is never lost. This 

process is repeated until a stopping criterion is met. In 

this case the stopping criterion is a maximum number of 

generations. Alternative criteria could be a certain 

fitness value, or a maximum number of generations 

where no improvements were found. 

For further reading the work of Goldberg
9
 is 

recommended which provides a thorough discussion of 
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GAs. In the works of Chen
13

 and Turkmen
14

 the GA is 

applied to an MTT problem.  

 

 

 
Figure 2: Flowchart of an elitist GA 

Population Based Incremental Learning 

The PBIL algorithm is a close relative of the GA. 

However, it is even simpler and in some cases also more 

powerful. It aims at learning a probability distribution 

from which highly fit individuals can be sampled. This 

goal is achieved by using the information that is present 

in a given population of k-matrices. The probability 

distribution P for k-matrices is defined by the 

probability that a given tracklet is associated with a 

certain object. In other words, the probability given at a 

certain position (i,j) in the matrix gives the probability 

of the value at that position 𝑘𝑖,𝑗 being '1'. From this 

distribution a new k-matrix can be sampled by sampling 

an object at random (according to the probability 

distribution) for each tracklet. This algorithm is 

straightforward to implement and only consists of a few 

steps that are repeated until a certain criterion is 

reached. The flowchart for this algorithm is given in 

Figure 3. The probability distribution P is initialized to 

a uniform distribution for each tracklet. From this 

distribution the first population is sampled. These 

individuals are all evaluated as usual. In the current 

implementation of PBIL, only the very best individual is 

used to update the probability distribution. This is done 

according to the update rule in Equation [13].  

 

 𝑃𝑖,𝑗 = (𝑃𝑖,𝑗(1 − 𝐿𝑅)) + (𝐿𝑅 ∙  𝐾𝑖,𝑗)  [13] 

 

Here the subscript i stands for the tracklet number 

and j stands for the object number. The matrices P and 

K are the probability distribution and the best k-matrix 

in the population respectively. The parameter LR is the 

Learning Rate parameter, it dictates how much impact 

the current best solution has on the probability 

distribution. The LR parameter is an important 

parameter since it effectively controls the convergence 

rate. If it is set too high, the PBIL algorithm will 

converge quickly but to a local minimum. If it is set too 

low, the algorithm will converge slowly. Different 

update schemes exist, however after some 

experimentation with these it was opted to use the 

simplest scheme of only using the best solution. In PBIL 

there is also a mutation operator in order to ensure 

versatility in the population and to provide a mechanism 

to escape from local minima. The mutations can either 

be performed directly on the individuals (as in GA) or 

on the probability distribution itself. Here it was opted 

to mutate the distribution. This is done by randomly 

adding or subtracting a fixed value from a parameter in 

the P matrix.  

 

This algorithm has shown promise, since in many 

cases it outperforms the standard GA
10

. One pitfall of 

this algorithm however is that it assumes that all the 

parameters are independent from one another. In the GA 

these dependencies are taken into account, because it 

uses the crossover operator. The strength of the GA lies 

with this crossover operator and its capability of 

successfully combining 'building blocks' (thus with 

strong inter dependencies) to come up with promising 

solutions. It can therefore be expected that if these inter 

dependencies are very strong (this is a problem 

dependent issue), the PBIL algorithm could have poorer 

performance than the classical GA. Research is being 

done in this area at the moment. Instead of learning the 

probability distribution as in PBIL, the goal is to learn 

the inter dependencies between the parameters. In this 

case both a model and the inter dependency values have 

to be learned, together this makes up a Bayesian 

Network. Examples of such algorithms can be found 

in
15,16

. For further reading about the PBIL algorithm the 

reader is referred to the work of Baluja
10

. 
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Figure 3: Flowchart for the PBIL algorithm 

 

Differential Evolution 

Differential Evolution was first thought of in the 

1990s in order to find optimal solutions to problems 

with continuous variables. Since then efforts have been 

made to adapt the original algorithm so that it can be 

applied to discrete (combinatorial) problems
1711

. These 

efforts have been successful in some cases, however the 

applicability of DE to combinatorial optimization 

problems remains debatable. The main difference 

between DE and GA is the way in which new 

individuals are produced. In GA this is done by the 

crossover and mutation operators. In DE the difference 

between (real valued) candidate solution vectors is used 

to guide the search process. The notation 𝑥𝑔,𝑖  is 

adopted. Here g denotes the generation number and the i 

is the number of the individual. The 𝑥 means that it is a 

current member of the population. From these 

population members three are selected to construct the 

so called mutation vector 𝑣𝑔,𝑖 as shown in Equation 

[14].  

 

 𝑣𝑔,𝑖 = 𝑥𝑔,𝑟1
+ 𝐹(𝑥𝑔,𝑟2

− 𝑥𝑔,𝑟3
)  [14] 

 

Here 𝑟1 ≠ 𝑟2 ≠ 𝑟3. The parameter F is the scaling 

parameter. It dictates in what measure the difference 

vector will perturb the other solution. Now the mutation 

vector is used to construct a trial vector 𝑢𝑔,𝑖. This is 

done by combining the mutation vector 𝑣𝑔,𝑖  with 𝑥𝑔,𝑖 by 

exchanging parameter values between the two vectors. 

This is done by applying the crossover operator (as in 

the GA). The final step is to evaluate the new vector 

𝑢𝑔,𝑖, if it is better than the current solution 𝑥𝑔,𝑖,𝑗  then it 

will replace it. Otherwise the original solution is kept 

and copied to the next generation without making any 

changes. Different schemes exist to create the mutation 

vector. They differ by the way in which they select the 

solution vector to change and the number of vectors that 

are used. In the current implementation the scheme in 

Equation [15] is applied. 

 

 𝑣𝑔,𝑖 = 𝑥𝑔,𝑏𝑒𝑠𝑡 + 𝐹(𝑥𝑔,𝑟2
− 𝑥𝑔,𝑟3

)  [15] 

 

 As can been seen in the equation, the difference 

vector is always applied to the best solution in the 

population. Furthermore, the 𝑟2 and 𝑟3 solutions are 

randomly selected according to the relative fitness of 

each individual. As mentioned earlier, this method was 

first conceived for applications on real valued problems. 

There are two ways to adapt DE to handle discrete 

variables. One way is to adapt the main operator of the 

algorithm as given in Equation 2. The other way is to 

transform the solution vectors from the discrete domain 

to the real domain and to leave the differential operator 

as it is. Different options are outlined in
17,11

. Here it was 

opted to transform the solution vectors to the real 

domain. The transformation used is called the forward 

backward transformation. The idea is to first transform 

the population from the discrete to real domain using 

the forward transformation, then DE can be applied as 

usual, after this the new candidate solution vectors are 

transformed back to the discrete domain with the 

backward transformation. In Equation [16] the forward 

transformation is given.  

 

 

 

 

𝑥̂𝑔,𝑖 = −1 + 𝛼𝑥𝑔,𝑖  [16] 

In the above equation 𝛼 is fixed to a value of 0.01. The 

value for 𝛼  is not very important, it only has to ensure a 

transformation to real (non integer) numbers. The 

backward transformation is the inverse of the above 

equation, giving Equation [17].  
 

 

 

 

𝑥𝑔,𝑖 = round (
1

𝛼
(1 + 𝑥̂𝑔,𝑖))  

[17] 

IV. COMPARATIVE STUDY 

 

With the algorithms in place several test cases can 

be studied. In this section three cases are presented. 

Each case is based on simulated observations, where the 

objects stem from the TLE-Catalog
*
 and are propagated 

with a Keplerian motion. Note that in this case the 

model used in the simulations is the exact same as the 

one used in the computations, since solving the Lambert 

problem employs a Keplerian model as well. In each 

case the observations are collected at three epochs 

within the same night. A series of seven observations 

                                                           
*
 https://www.space-track.org/ 
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are made at a rate of one image per 30 seconds. This 

series represents one tracklet. The fences are spaced at 

two hour intervals in Right Ascension. Furthermore, the 

observations are made in the topocentric frame 

associated with the Zimmerwald observatory. No 

visibility conditions other than the elevation of the 

object are considered here. A Gaussian noise is added to 

each individual observation with a standard deviation of 

𝜎 = 1". The settings of the algorithms are kept constant, 

they can be found in Table 1. To reduce the 

computation time a look up table is maintained. 

Whenever the fitness function is evaluated for a given 

set of tracklets the result is stored in this table. Before 

each fitness evaluation it is checked whether the tracklet 

group has already been treated, if so its fitness is taken 

from the table. The first test case involves four objects 

that are clearly separated in inclination, this should be a 

relatively easy task. For the second study case one of 

the ASTRA clusters is used. These are again four 

objects but spaced close together (about 0.06 degrees in 

declination). It is expected that the convergence of the 

algorithm will be slower when compared to the first 

case, since the difference between the correct and 

erroneous solutions are smaller in the case of the cluster. 

For the last test case the two previous situations are 

mixed. This gives a total of eight objects. It is expected 

that the algorithm will find the correct correlations 

among the four 'easy' targets relatively soon, and will 

need more time to correctly distinguish the cluster. 

These tests are performed without any gating or 

limitations on the search space, which are topics of 

future research. For each test case the average 

convergence is presented. As the algorithms are 

stochastic it is unrealistic to try to derive any bounds on 

the convergence behavior through analytical means. 

Therefore it is common practice to present the average 

performance over multiple runs. In this work the 

algorithms are applied 100 times for each test case. Also 

the average k-matrix found at the last generation is 

shown and compared to the true k-matrix.  

 

 GA EGA PBIL DE 

Pop. Size 2 x N 2 x N 2 x N 2 x N 

𝑝𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 1 / N 1 / N 1 / N 1 / N 

𝑝𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟  0.5 0.5 0.5 0.5 

% copied 10 N/A N/A N/A 

α N/A N/A N/A 1e-3 

F N/A N/A N/A 0.8 

LR N/A N/A 0.05 N/A 

Mutation 

shift 

N/A N/A 1 / i N/A 

Table 1: Parameter settings of the algorithms. These 

settings are kept constant throughout all the tests. The i 

in the mutation shift parameter of PBIL denotes the 

row number in the k-matrix. 

 

 

First test case 

In Figure 4 the observations for the first test case can 

be seen. Here it is seen that all the tracklets are spaced 

at considerable distances from each other. Therefore this 

test case should be an easy one to solve for the 

algorithm. The numbers noted in the legend of the 

figure correspond to the NORAD ID numbers of the 

objects. 

 

 
Figure 4: Right Ascension and Declination of the 

observations used in the first test case.  

In Figure 5 the average best solution per generation 

can be found. The straight red line represents the 

optimum solution.  

 
Figure 5: Average best fitness per generation for each 

of the algorithms applied to the first test case.  

From these results a few clear conclusions can be 

drawn. First of all, the results of the standard GA are not 

to be seen in this plot. This is because this algorithm is 

not capable of finding a solution with a fitness value in 

the range denoted on the y-axis. Apparently the standard 

GA is not suitable when attempting to track Space 

Debris. Surprisingly the DE algorithm already performs 
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much better than the GA. This is unexpected since the 

DE algorithm is an algorithm that is known to have 

problems when facing a combinatorial problem. The 

PBIL algorithm seems to converge rapidly (the fastest 

of them all), but it reaches a plateau very early on in the 

run. This signifies that the algorithm has found a local 

minimum and is trapped. This could be remedied by 

setting the LR parameter lower, and the mutation 

probability and the impact of the mutation operator on 

the probability distribution higher. The clear winner 

among these algorithms is the EGA. Recall that the only 

difference between the GA and the EGA is that in the 

EGA the best individuals are always copied to the next 

population. Therefore the computational cost is exactly 

the same for both algorithms. Apparently it is of 

paramount importance that the information contained in 

the top individuals is not lost. This also explains the 

relative success of DE with respect to the GA, since in 

DE the best individuals are always kept as well.  

These results are also reflected in the average k-

matrix that each algorithm found at the end of the run 

(at generation number 150). In Figure 6 these k-matrices 

are compared to each other and to the optimum solution. 

 

 
Figure 6: The average best k-matrix found at 

generation number 150 for each algorithm compared to 

the true solution.  

The results shown in Figure 6 are in accordance with 

those shown in Figure 5. The GA is barely able to 

distinguish any correct correlations, instead it tends to 

put all the tracklets on the diagonal of the k-matrix 

(effectively assigning each tracklet to a different object). 

The PBIL algorithm has indeed found a local minimum 

which is in part correct.  It consistently finds one of the 

objects, however it is not able to form the complete 3-

tuples of tracklets of the other objects. Finally the DE 

algorithm consistently finds correct correlations but is 

not able to form the complete groups of tracklets either. 

The success of the EGA can be accredited to the fact 

that it takes the interdependencies among the parameters 

(tracklets) into account. It does this through the use of 

the crossover operator, which preserves the so-called 

building blocks which contain these dependencies. 

Besides this, the EGA always keeps the individuals with 

the best fitness score. In this way these individuals will 

always be used in the next generation when new 

individuals have to be made. The regular GA discards 

the whole previous population, therefore it is not able to 

improve the previous best solution. In this test case a 

small mistake in correlation will quickly lead to a bad 

fitness score due to the fact that the tracklets are spaced 

so far apart from each other.  

 

Second test case 

The second test case concerns a satellite cluster. 

Satellite clusters form one of the most challenging 

situations in Space Debris tracking because of the 

objects’ close proximity to each other. Therefore it is  

an interesting test case for the proposed algorithms. In 

Figure 7 the observations for this test case are found.  

 

 
Figure 7: Right Ascension and Declination of the 

observations used in the second test case (ASTRA cluster).  

In Figure 8 the average best solution per generation 

can be found.  

 

Figure 8: Average best fitness per generation for each 

of the algorithms applied to the second test case.  

The results show a similar behaviour as in the first 

test case. An interesting observation here is that the GA 

manages to parallel the performance of PBIL. This is 

because a wrong correlation in this scenario will not 
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necessarily lead to a bad fitness value, due to the 

tracklets being closely spaced, and their angular rates 

being similar to one another. Again the importance of 

keeping the best solutions is shown. The EGA clearly 

outperforms the other algorithms.  In Figure 9 the 

average k-matrix at the end of the run can be found.  

 
Figure 9: the average best k-matrix found at 

generation number 150 for each algorithm compared to 

the true solution.  

In these results it is again evident that the EGA is the 

only algorithm capable of approximating the correct 

solution in a reliable way. PBIL again seems to get 

stuck in a local minimum, and DE consistently finds 

good correlations but is unable to form the complete 

groups of three tracklets.  

 

 

Third test case 

In the third test case the previous two cases are 

mixed. The expectation is that the algorithms are able to 

quickly find the correct correlations for the ‘easy’ 

targets and will focus on the cluster afterwards. There is 

one single tracklet included of an object that has only 

been observed in one fence. In Figure 10 the 

observations used in this test case are seen. 

 
Figure 10: Right Ascension and Declination of the 

observations used in the third test case. 

In Figure 11 the average best fitness value per 

generation can be seen. These results are again in 

accordance with the results of the previous test cases. 

The EGA is clearly the only algorithm capable of 

finding a reasonable solution.  

 

 

 

 
Figure 11: Average best fitness per generation for each 

of the algorithms applied to the third test case.  

Figure 12 shows the average k-matrix found at 

generation 150. The first four columns of this matrix 

correspond to the four objects that are in the cluster. It is 

clear that the EGA would need more time to distinguish 

these objects with certainty. Columns five until seven 

correspond to the objects 2639, 2717 and 858, which are 

the relatively easy targets. Although the EGA is still 

unsure about the objects in the cluster, it has correlated 

these three easy targets correctly. This shows that the 

EGA is able to identify the objects in the more sparsely 

populated areas with relative ease, after which it focuses 

on the high density regions such as satellite clusters. 

Also, it has identified the stand-alone tracklet without 

any issues. Note that this should not have posed any 

problems since this tracklet is spaced far apart from the 

other observations (both in angular position as in 

angular rate). 

 

 

Figure 12: The average best k-matrix found at 

generation number 150 for each algorithm compared to 

the true solution.  
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V. TIME COMPLEXITY 

 

It is notoriously difficult to derive any statement on 

the time complexity of these types of algorithms. This is 

because the algorithms are all stochastic in nature, and 

their behaviour cannot be easily described through 

analytical means. The results in this section aim to give 

an impression of the relationship between the 

computation time and the number of objects that are 

tracked.  

Nine GEO objects are simulated. All the orbits are 

identical but shifted by 1° increments in inclination. 

This is to ensure that the difficulty of the problem does 

not change when the number of objects is increased (as 

can be seen when comparing the first and second test 

cases in the previous section). The EGA is applied 100 

times for each problem size, from two to nine objects. 

Again, the average best fitness per generation is shown, 

but now all values have been normalized by dividing 

them by the fitness value of the optimum solution. In 

Figure 13 these results can be found.  

 

 
Figure 13: Average best fitness values for problems 

with an increase in the number of objects.  

From Figure 13 the necessary number of generations 

needed for a certain approximation can be found. This is 

done by finding all the intersection points of the curves 

with a constant value. In Figure 14 these intersection 

points have been plotted for three different constant 

values.  

 
Figure 14: Scaling behaviour of the EGA algorithm 

when the number of objects is increased.   

 

Recall that the population size grows with 2xN (N 

being the number of tracklets). Besides this the number 

of orbit determinations per k-matrix evaluation grows 

with the number of objects as well. Therefore an 

increase in the number of tracklets will both cause a 

linear increase in the population size as well as the 

number of orbits to be determined per individual. This 

𝒪(𝑛2) cost is not taken into account in Figure 14. 

Therefore, what Figure 14 shows is the added 

computation cost on top of the 𝒪(𝑛2) that comes with 

increasing the number of tracklets.  

From the results it is clear that the scaling of the 

algorithm depends on the desired quality of the 

approximate solution. In future research the necessary 

quality of the approximate solution will be a focus 

point. It will also be important to find an efficient way 

to reduce the search space for the EGA. In that way the 

EGA can focus on difficult scenarios such as satellite 

clusters and break-ups, where relatively few objects are 

involved.  

 

VI. CONCLUSIONS 

 

This work aimed to find a method that is able to 

approximate the solution to the 𝑆 ≥ 3 MTT problem in 

a reasonable computation time. Several algorithms have 

been tested, namely the GA, EGA, PBIL and DE 

algorithms. Three test cases were considered, the results 

throughout these test cases are consistent. In each case 

the EGA was the only algorithm capable of consistently 

finding the complete groups of tracklets. The other 

algorithms fail to do this, however they still are able to 

match smaller groups of tracklets.  

A study has been performed to determine the 

relationship between computation time and the number 

of tracked objects. This study has only been performed 

with the EGA, since this is the only algorithm capable 

of reliably approximating the correct solution. From the 

results it becomes clear that the computation costs 

become significant.  

Future research will therefore focus on finding an 

efficient way to reduce the search space for the EGA. In 

this way the EGA can focus on more challenging 

situations such as satellite clusters and break-ups, 

effectively reducing the number of objects that are 

handled. Once such a method is in place the algorithm 

can be applied to data sets of realistic size (500-1000 

tracklets). Finally the goal is to collect real observations 

through a survey type observation strategy and to test 

the algorithm with the real observations. To reach that 

goal an intermediate step will be taken, where the 

effects of different dynamics models in the tracklet 

simulations are studied.   
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