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The Astronomical Institute of the University of Bern (AIUB) is conducting several search campaigns for space 

debris using optical sensors. The debris objects are discovered during systematic survey observations. In general, the 
result of a discovery consists in only a short observation arc, or tracklet, which is used to perform a first orbit 
determination in order to be able to observe the object again in subsequent follow-up observations. The additional 
observations are used in the orbit improvement process to obtain accurate orbits to be included in a catalogue. In 
order to obtain the most accurate orbit within the time available it is necessary to optimize the follow-up 
observations strategy. 

In this paper an in‐depth study, using simulations and covariance analysis, is performed to identify the optimal 
sequence of follow-up observations to obtain the most accurate orbit propagation to be used for the space debris 
catalogue maintenance. The main factors that determine the accuracy of the results of an orbit 
determination/improvement process are: tracklet length, number of observations, type of orbit, astrometric error of 
the measurements, time interval between tracklets, and the relative position of the object along its orbit with respect 
to the observing station. The main aim of the covariance analysis is to optimize the follow-up strategy as a function 
of the object-observer geometry, the interval between follow-up observations and the shape of the orbit. This 
analysis can be applied to every orbital regime but particular attention was dedicated to geostationary, Molniya, and 
geostationary transfer orbits. Finally the case with more than two follow-up observations and the influence of a 
second observing station are also analyzed. 

 
 

I.  INTRODUCTION 
At the moment, in the space around the Earth, there 

are more than 29000 objects with a diameter bigger than 
10 cm, and more than 670000 objects bigger than 1 cm; 
furthermore, according to estimates there are more than 
170 million objects bigger than 1 mm1. Among all these 
objects, only about 1400 are active satellites, all the rest 
is space debris.  

Space debris constitutes a serious problem for space 
missions, both, manned and robotic. Because of the high 
velocities of the debris particles, the present shields are 
able to protect spacecraft only from debris whose size is 
smaller than 1 centimetre2. 

The Astronomical Institute of the Univerity of Bern 
(AIUB) is also involved in the space debris field of 
research. In particular, the AIUB, using its telescopes, is 
contributing to answer the most common questions 
related to space debris like: how many debris objects are 
there? What are the most populated regions? What are 
they made of? And how will this population evolve in 
future? To answer these questions the most common 
approach consists of three main steps: the first is the 
discovery of the objects3,  the second is the orbit 

determination4 and the third is the characterization of 
the objects5. 

The discovery of the objects is performed by 
scanning certain regions of the sky chosen in a way to 
ensure that an object is observed several times during 
the same night6. The orbit determination is performed 
by planning regular observations of the object of 
interest, these additional series of observations are 
usually called follow-up observations. Due to the huge 
amount of space debris and to the limitations of the 
telescopes, it is necessary to optimize the use of the time 
available for observations. 

This paper will describe a method, based on the 
analysis of the covariance matrix, to understand how the 
observations should be distributed to minimize the 
uncertainties of the estimated orbital elements in order 
to maximize the accuracy of the predicted positions of 
the object. In the first part of the paper we describe the 
reasons that brought us to use the covariance matrix for 
this study and we will show the results obtained on a 
relatively simple scenario to highlight the effects of the 
main parameters on the results. Then the covariance 
study is performed on some typical observation 
scenarios. Finally, we will present the results obtained 
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from the application of this study in the case of two 
observers and in the case of more than two series of 
observations. 

 
II. THEORY 

Depending on the number of objects to observe in 
the catalogue, the survey strategy and also the 
performance of the software used to extract the 
measurements from an image, the number of 
observations per night per object is not constant among 
the various observatories. To carry out this study we 
chose the number of observations per object accordingly 
to what is provided by the AIUB observatory at the end 
of an observation night. Using the tools available at the 
AIUB is not unusual to have an average of two standard 
tracklets per observed object at the end of an 
observation night. A tracklet is the result of a series of 
images acquired during a survey campaign or during a 
follow-up of an already catalogued object. We assume 
that a standard tracklet is consisting of e.g. 7 images, 
each one of them contains a triplet of data: a pair of 
angular measurements, one in Right Ascension (RA) 
and one in Declination (DE); and the time epoch when 
the measurements were collected. 

These series of observations are then used to 
determine/improve the orbit of the object by mean of a 
Least Squares adjustment (LSQ). The aim of this study 
is to analyse the output covariance of a LSQ process to 
understand how the relative geometry between observer 
and target object influences the accuracy of the 
estimated parameters. The covariance matrix was 
chosen as the evaluation criterion because, as one can 
see from Eq. [1], it contains the uncertainties of the 
estimated parameters as a function of the partial 
derivatives of the observations w.r.t. them. These partial 
derivatives are functions of the geometric relation 
between observer and observed object. 

 

 𝑃𝑃 = 𝑚𝑚2[𝐴𝐴𝑇𝑇𝑊𝑊𝑊𝑊]−1 [1] 
 

in which: 
 

 
𝐴𝐴 =

𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖
𝑑𝑑𝑋𝑋0

 
[2] 

 
where: 

− 𝑃𝑃 is the covariance matrix, 
− 𝑚𝑚 is the a posteriori error for unit weight, 
− 𝐴𝐴 is the first design matrix, 
− 𝑊𝑊 is the weight matrix, 
− 𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 = [𝑅𝑅𝑅𝑅𝑖𝑖 ,𝐷𝐷𝐷𝐷𝑖𝑖] are the 𝑖𝑖𝑡𝑡ℎ angular 

measurements, respectively Right 
Ascension and Declination, where 𝑖𝑖 =
1, … ,𝑛𝑛 and 𝑛𝑛 is the number of 
observations, 

− 𝑋𝑋0 = [𝑎𝑎, 𝑒𝑒, 𝑖𝑖,Ω,𝜔𝜔,𝑢𝑢0] are the orbital 
parameters to be estimated, namely semi-
major axis, eccentricity, inclination, Right 
Ascension of Ascending Node (RAAN), 
argument of perigee and argument of 
latitude at the osculating time 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 . 

 
The argument of latitude was chosen instead of the 

classical perigee passing time (𝑇𝑇0) because for circular 
orbit the perigee is not defined, then also 𝑇𝑇0 is not 
defined anymore. Hence, exploiting the definition of 
osculating elements7, the user can set up an arbitrary 
osculating time (𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜), with a certain 𝜔𝜔 and true 
anomaly at this time (𝜈𝜈0), and solve the LSQ adjustment 
at this epoch. 

Another important information is contained within 
the correlation indices which can be retrieved from the 
covariance matrix as shown in Eq. (3). These indices are 
useful because they tell us how strong any two 
parameters are correlated. 

 
 𝜌𝜌𝑖𝑖𝑖𝑖 =

𝜎𝜎𝑖𝑖𝑖𝑖
𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗

 [3] 

 
where: 

− −1 ≤ 𝜌𝜌 ≤ 1 is the correlation index, 
− 𝜎𝜎𝑖𝑖𝑖𝑖 is the covariance of the elements 𝑖𝑖 and 𝑗𝑗, 
− 𝜎𝜎𝑖𝑖 and 𝜎𝜎𝑗𝑗 are the standard deviation of the 

elements 𝑖𝑖 and 𝑗𝑗. 
 
 

III. METHOD 
The main aim of this study is to understand how the 

relative object-observer geometry influences the 
accuracy of the estimated parameters. The first results 
which will be presented are based on a limited number 
of observations, in particular only two tracklets are 
used, each one is made by 7 triplets of measurements 
(i.e. RA, DE and time epoch). During all simulations the 
time interval between the measurements within a 
tracklet is kept constant to 30 seconds. The simulations 
are performed in order to cover all possible 
combinations of tracklet positions in the orbit. To do so, 
the first LSQ adjustment is performed positioning the 
first tracklet on the orbit perigee and the time interval 
between first and second tracklet is increased from 10 
sec to two orbital revolutions; then, the same procedure 
is repeated positioning in each run the first tracklet 
slightly forward along the orbit. During the simulations, 
the position of the observer is kept constant for the 
different 1st tracklet positions while for the 2nd tracklet, 
the position of the observer is rotated accordingly with 
the time interval between tracklets and Earth’s angular 
velocity. For each couple of tracklets the last iteration of 
a LSQ adjustment is simulated and from the relative 
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covariance matrix the square root of the terms in the 
main diagonal and the correlation coefficients are 
stored. Since we are not interested in LSQ performances 
the correct orbital elements are given as input to the 
LSQ. It is possible to do this simplification because 
being a non-linear LSQ, the only requirement to find the 
minimum is that the initial value of the estimated 
parameters should be near to the global minimum values 
to converge to the correct solution8. 

This paper will also show the results obtained from 
the analysis of two particulars scenarios: in the first, two 
observers are used, while in the second three tracklets 
from a single observer are used. In the case of two 
observers we assumed that they are able to observe the 
object precisely at the same time. To do this experiment 
we kept the same procedure as shown before. While in 
the case of three tracklets, with a single observer, the 
procedure was slightly modified in order to keep fix the 
time distance between the 1st and the 2nd tracklet while 
we let vary the time distance between 2nd and 3rd 
tracklet. 

The procedure just described was repeated for 
different kinds of orbit and different positions of the 
observer in order to understand how all these factors 
influence the accuracy of the estimated parameters. 

 
IV. RESULTS 

IV.I First results 
In order to easily understand the results and the 

contribution of each parameter on them, the simulation 
are performed first on a simple scenario. As “standard” 
orbit a geosynchronous eccentric orbit is used, its orbital 
elements are respectively: 𝑎𝑎 = 42164.173 km, 𝑒𝑒 = 0.5, 
𝑖𝑖 = 0.1°, Ω = 𝜔𝜔 = 0° and 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜  coincides with the time 
of first observation. While as “standard” observer an 
equatorial observer on the Greenwich meridian is used. 
The simulations are then repeated each time modifying 
one parameter. First the influence of the observer 
position is evaluated and then also the effects of the 
orbital parameters are analyzed; the results of these 
simulations are shown in the following paragraph.  

Finally, it is important to note that being a 
geometrical study the real orientation of the Earth in the 
space is neglected. To better understand the results we 
set up the orbits so that their line of nodes/apsides are 
coincident with the 𝑥𝑥-axis of the generic inertial system; 
and the Greenwich meridian is also aligned with the 
same axis at time 𝑡𝑡 = 0. 

The results obtained for the just described scenario 
are displayed from Fig. 1.A to Fig. 1.F. Each point of 
the figures shows the logarithm, with base ten, of the 
square root of the uncertainty of the estimated parameter 
as a function of the tracklets positions. In particular, the 
position of the 1st tracklet along the orbit can be read on 
the 𝑦𝑦-axis, while the position of the 2nd is displayed on 
the 𝑥𝑥-axis. Both positions are expressed in terms of true 

anomaly. 
 

 
Fig. 1.A Semi-major axis uncertainty map. 

 

 
Fig. 1.B Eccentricity uncertainty map. 

 

 
Fig. 1.C Inclination uncertainty map. 

 

 
Fig. 1.D RAAN uncertainty map. 

 

 
Fig. 1.E Argument of perigee uncertainty map. 
 

 
Fig. 1.F Argument of latitude uncertainty map. 
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From the figures just shown (Fig. 1.A to Fig. 1.F) it is 
possible to notice some important characteristics: the 
first is given by the fact that for the semi-major axis, for 
the eccentricity and for the argument of perigee the 
features visible in the first orbital revolution are 
different from those visible in the second, this is a 
consequence of the time dependency of the partial 
derivatives of the observation w.r.t. the semi-major axis. 
The second is that for the same elements an S-shaped 
high uncertainty area is visible when the time distance 
between the tracklets is more than one orbital period; 
more precisely the S-area is occurring when the time 
distance between tracklets is 1.5 orbital periods. 
Comparing the S-area of the eccentricity and the 
argument of perigee with that of the semi-major axis it 
is easy to notice how the first two show some 
interruptions while the third is continuous. Being this an 
elliptical orbit and the tracklets are acquired with a 
constant time separations between observations, it is 
obvious that the arc of orbit covered by the tracklet 
depends on the position of the tracklet; furthermore, for 
the same reason, also the distance between single 
observations is not constant. This effect provides 
information regarding the eccentricity of the orbit and 
the argument of perigee. If one pays attention the 
interruptions for the eccentricity are occurring when the 
1st tracklet is at the apogee while the 2nd is at the perigee 
and vice versa. This tracklets combination maximizes 
the ratio between the lengths of the arcs covered by the 
tracklets. The interruptions for the argument of perigee 
are occurring when the tracklets are symmetric w.r.t. the 
line of the apsides. In this configuration two tracklets of 
the same length are used, and the distances between the 
observations within the tracklet are first increasing then 
decreasing (or vice versa) in the same way. This tells us 
if the apogee or the perigee is precisely in the middle of 
the arc defined by the two tracklets. 

Fig. 1.C and Fig. 1.D show the uncertainty maps for 
𝑖𝑖 and Ω which are characterized by one main feature of 
high uncertainty values which includes all the positions 
with a difference in time of one (or more) orbital period 
and which are separated by 180° in true anomaly. These 
two position vectors are parallel and then it is not 
possible to define the orbital plane. These features 
present some interruptions that, for the inclination, are 
occurring when the tracklets are at the maximum 
distance from the line of the nodes; while, for the 
RAAN, the interruptions occur when the tracklets are on 
the line of the nodes. 

For completeness Fig. 1.F shows the uncertainty 
map for the argument of latitude at time 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜  (𝑢𝑢0). The 
results for this parameter will not be shown anymore on 
this paper because our interest is mainly focused on the 
geometric parameters. 

Finally, it is important to highlight two particular 
regions on the uncertainty maps: the first, identified by 
the black diagonal line, whose extremes have 
coordinates [𝜈𝜈2 = 360, 𝜈𝜈1 = 0],  [𝜈𝜈2 = 720, 𝜈𝜈1 = 360], 
defines all tracklets whose positions are separated by 
one (or more) orbital period in time. The second, 
identified by the magenta line, whose extremes have 
coordinates [𝜈𝜈2 = 360, 𝜈𝜈1 = 360], [𝜈𝜈2 = 720, 𝜈𝜈1 = 0], 
defines all tracklets whose positions are symmetric to 
the lines of the apsides. Of course all the lines parallel to 
the before mentioned ones, with a distance multiple of 
360°, have the same meaning. 
 

Influence of observer position 
To study the influence of the observer position the 

results and the scenario described in the previous 
paragraph are taken as reference then the simulations 
are repeated changing the position of the observer on 
the Earth’s surface. In particular, first the case with an 
observer on the Greenwich meridian with a latitude of 
50° North is analysed; then the position of the equatorial 
observer is displaced by 50 degree in longitude w.r.t. the 
reference position. 

Fig 2.A, Fig 2.B and Fig 2.C show the uncertainty 
maps for 𝑎𝑎, 𝑖𝑖 and 𝜔𝜔 obtained with the reference orbit 
and the observer displaced in latitude by 50°. 

 

 
Fig 2.A Semi-major axis uncertainty map with a latitude 

displaced observer. 
 

 
Fig 2.B Inclination uncertainty map with a latitude 

displaced observer. 
 

 
Fig 2.C Argument of perigee uncertainty map with a 

latitude displaced observer. 
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Comparing the results in Fig 2.A, Fig 2.B and Fig 

2.C respectively with those in Fig. 1.A, Fig. 1.C and 
Fig. 1.E one has to take into account that the first ones 
are obtained with an observer always outside the orbital 
plane while the seconds with one always inside the 
orbital plane. This distinction is very important because 
having only angular measurements in principle is not 
possible to directly estimate distances. Being outside the 
orbital plane, knowing the position of the observer and 
the direction of the observations, one is able to estimate 
the distance of the object from the observer. This effect 
is clearly visible in the semi-major axis uncertainty map 
where the intensity of the S-area is strongly reduced in 
the case of latitude displaced observer; the same effect 
is noticeable for the map w.r.t. the eccentricity. In Fig 
2.A also a new feature is visible: a diagonal line with 
low uncertainty values when 𝜈𝜈2 − 𝜈𝜈1 = 180°. This 
effect can be explained by the fact that an orbit is a 
section of a cone; in fact, observing the orbit from the 
apex of the cone (or from a circular section of the cone) 
and being able to estimate distances, it is easier to 
determine semi-major axis and eccentricity. 

Comparing now the maps for the inclination 
(respectively Fig. 1.C and Fig 2.B), one can see that the 
main features are kept, but there is a reduction of the 
sharpness of the high uncertainty area for tracklets 
separated by 180° of true anomaly and the average 
uncertainty remarkably increased. This is well 
understandable because the inclination is determined 
measuring the distance of the object from the equatorial 
plane; having a relatively small distance, given by the 
inclination of 0.1°, this can be better measured if the 
observer is inside the orbital plane. 

One interesting result can be seen analysing the 
maps related to the argument of perigee. Looking at Fig. 
1.E is possible to see how the classical high uncertainty 
S-shaped area is present together with a diagonal high 
uncertainty area for tracklet separated by 180° in true 
anomaly. This second feature is characteristic of Ω but 
is present also on 𝜔𝜔 because of the small inclination 
value. For 𝑖𝑖 → 0 it is difficult to define the line of the 
nodes and being the argument of perigee defined w.r.t. 
this line all the uncertainties of Ω are transferred to 𝜔𝜔 
(and also to 𝑢𝑢0). Comparing these features with those 
visible in Fig 2.C, it is easy to notice how the S-area is 
still present but in this case it is a low uncertainty area. 
This can be explained by the fact that, looking from 
outside the orbital plane, the improvement given by the 
capability to estimate distances will produce a better 
determination of 𝑎𝑎 and 𝑒𝑒 with a consequent 
decorrelation of them from 𝜔𝜔. 

The simulations were repeated also in the case with 
a longitude displaced observer with the same almost 
equatorial orbit. Like for the reference scenario also in 

this case, the observer is always within the orbital plane 
and no significant effects can be seen. 

In conclusion, is it better to observe within or 
outside the orbital plane? There is not a unique answer 
to this question in fact: the observer inside the orbital 
plane gains more information about the orientation of 
the orbital plane in the space, amplifying the effect 
given by the distance of the observations from the line 
of the nodes and reducing the average uncertainty 
values. Vice versa, observing from outside the orbital 
plane allows the estimation of the distances which 
reduces the average error on 𝑎𝑎, strongly reduces the S-
area for 𝑎𝑎, 𝑒𝑒 and 𝜔𝜔, and helps to decorrelate the 
argument of perigee from the eccentricity and the semi-
major axis.  

 
Influence of orbital parameters 
Once the main features in the results were studied, 

the analysis was repeated varying the orbital parameter 
of the reference orbit in order to understand their 
influences. 

First, the influence of 𝑢𝑢0 was studied: modifying 𝑢𝑢0 
is equivalent to change the osculating time, this means 
to solve the orbit determination problem for positions of 
the object in a different place of the orbit. This analysis 
showed that the modification on this parameter affects 
only the map of the argument of latitude while is not 
influencing the other geometric parameters. 

The argument of perigee describes the orientation of 
the orbit within the orbital plane, changing it, means to 
change the intersection points of the orbit with the 
equatorial plane producing only a translation of the 
minimum horizontal lines seen in the maps of the 
inclination and of the RAAN. 

Changing the position of the line of the nodes (Ω) 
produces the same effect of a longitude displacement of 
the observer changing the relative position of the 
observer w.r.t. the orbital plane. In particular the 
observer will be inside or outside the orbital plane for 
different time distances between the tracklets reducing 
the strength of the S-area for 𝑎𝑎 and 𝑒𝑒 if the observer will 
be more outside the orbital plane and influencing the 
low uncertainty area for 𝑖𝑖 and Ω. 

The main effect related to the inclination is given 
when 𝑖𝑖 tends to 0. If 𝑖𝑖 = 0 ⇒ Ω is not defined. The main 
effect of this singularity is visible in the map of 𝜔𝜔 
because being defined since the line of the nodes it will 
present the characteristics features of Ω. Additionally 
the closer is 𝑖𝑖 to 0 the fainter will be the S-area for 𝜔𝜔. 
Finally being 𝑢𝑢0 = 𝜔𝜔 + 𝜈𝜈0 the main features of Ω are 
consequently transferred also to the argument of 
latitude. 

The eccentricity is the main responsible for the S-
area, in particular if 𝑒𝑒 grows the S tends to have the 
shape of two hyperbolas, while if 𝑒𝑒 decreases the S 
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tends to become a diagonal line for tracklets separated 
by 180° in true anomaly. 

The last interesting effects are given by the 
variations of the semi-major axis which are related to 
the Earth’s parallax, the length of the arc covered by the 
tracklet and the ratio between Earth’s rotation period 
and orbital period. Increasing the semi-major axis 
means augmenting the distance of the object from the 
observer. This produces a general rise of the average 
uncertainty values especially for 𝑎𝑎 and 𝑒𝑒. If the object is 
enough distant from the Earth the effect given by the 
Earth’s parallax and those given by the observer outside 
the orbital plane are strongly reduced with results 
similar to those obtained for an observer always within 
the orbital plane. Furthermore, the time interval between 
observations within a tracklet is kept constant during the 
simulations; this leads to a decrease of the length of the 
arc of orbit covered by a tracklet producing a loss of 
information for 𝑎𝑎, 𝑒𝑒 and 𝜔𝜔. The ratio between the orbital 
period and the Earth’s rotation is important because it 
will determine when an observer is within or outside the 
orbital plane. As seen before this is important for the 
high uncertainty S-shaped area. 
 
IV.II Application on real orbits 

Once the effects of each single parameter and those 
related to the position of the observer are known, the 
next step is to apply this method to a real scenario 
characterized by a real orbit with a real observer. The 
following paragraphs will show the results obtained for 
three orbits which are largely populated by satellites and 
by space debris: the geostationary orbit (GEO), the 
geostationary transfer orbit (GTO) and Molniya orbit 
characterized by high eccentricity and inclination. 

 
GEO 
For this simulation the following orbital parameters 

are used: 𝑎𝑎 = 42164.173 km, 𝑒𝑒 = 0.0005, 𝑖𝑖 = 0.1°,
Ω = 270°,𝜔𝜔 = 0° and 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 = 1st observation. For the 
observer position the Zimmerwald observatory is used 
whose geodetic coordinates are: 46.8772° North, 
7.4652° East and 951.2 m altitude. A maximum 
distance of 2 orbital revolutions between the two 
tracklets is allowed. 

 

 
Fig. 3.A Semi-major axis uncertainty map for GEO 

object. 
 

 
Fig. 3.B Eccentricity uncertainty map for GEO object. 
 

 
Fig. 3.C Inclination uncertainty map for GEO object. 
 

 
Fig. 3.D RAAN uncertainty map for GEO object. 
 

 
Fig. 3.E Argument of perigee uncertainty map for GEO 

object. 
 

 
Fig. 3.F Argument of latitude uncertainty map for GEO 

object. 
 
As one can see from Fig. 3.A, Fig. 3.B and Fig. 3.E, 

being this a circular orbit, the S-area is now a diagonal 
line which is not yet precisely coincident with that of 
180° angular distance between tracklets because of the 
effect of the time dependency. The diagonal line of 
tracklet positions which are separated by 180° in true 
anomaly is due to the fact that the observer is always 
outside the orbital plane. Looking at the uncertainty 
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map for 𝑖𝑖 and Ω (respectively Fig. 3.C and Fig. 3.D), the 
high-uncertainty diagonal lines for tracklets separated 
by 180° and 360° in true anomaly are clearly visible. It 
is interesting to notice that the 180° tracklets separation, 
although it is not the best configuration of observation 
for 𝑖𝑖 and Ω, shows lower uncertainty values than the 
360° tracklets separation due to the different geometry 
condition given by the observer position on the Earth’s 
surface. Other consequences of the small eccentricity 
values can be observed in the average high uncertainties 
for the argument of perigee. In this case, despite the 
small inclination value, the argument of perigee keeps 
its features while the uncertainties of Ω are directly 
transferred to 𝑢𝑢0 which is completely correlated with it. 

 
GTO 
For this simulation the same scenario as described 

before is used changing only the orbital parameters of 
the orbit; in particular: 𝑎𝑎 = 24409.4 km, 𝑒𝑒 = 0.7287,
𝑖𝑖 = 6°, Ω = 226°,𝜔𝜔 = 0°.  

 

 
Fig. 4.A Semi-major axis uncertainty map for GTO 

object. 
 

 
Fig. 4.B Eccentricity uncertainty map for GTO object. 
 

 
Fig. 4.C Inclination uncertainty map for GTO object. 
 

 
Fig. 4.D RAAN uncertainty map for GTO object. 
 

 
Fig. 4.E Argument of perigee uncertainty map for GTO 

object. 
 

Although the results shown from Fig. 4.A to Fig. 4.E 
are a bit more difficult to interpret, it is still possible to 
recognize some main features. From Fig. 4.A and Fig. 
4.B it is easy to see how the S-area is strongly reduced 
by the fact that the observer is always outside the orbital 
plane and the orbital period with the Earth’s rotation 
period are not commensurable. In both maps the 
diagonal line for positions separated by 180°, 
characteristic of an observer outside the orbital plane, is 
also present. In Fig. 4.E is possible to see how the S-
area is now a minimum uncertainty area due again to the 
observer position. From Fig. 4.C and Fig. 4.D it is 
possible to see how the main diagonal features from 
tracklet separated by 180°, despite strongly reduced, are  
still presents. Especially for the inclination the highest 
uncertainty values are visible for tracklets close to the 
apogee; this is probably given by the sum of the effects  
due to the high eccentricity of the orbit and the fact that 
the line of the nodes coincides with the line of the 
apsides. This configuration is then characterized by the 
shortest tracklets along the orbit close to the line of the 
nodes. In the inclination map it is also possible to see 
two horizontal lines of minimum uncertainty values, 
respectively for 𝜈𝜈1 = 90° or 270°. Knowing that 𝜔𝜔 = 0, 
these regions coincide with the tracklets whose 
positions are at the maximum angular distance from the 
line of the nodes. Finally, if one looks at the map of Ω, 
will notice the similarities with that of 𝜔𝜔; this is due to 
the relatively small inclination value which leads to a 
high correlation of these two parameters. 

 
Molniya 
For this simulation the same scenario as described 

before is used changing only the orbital parameters of 
the orbit; in particular: 𝑎𝑎 = 26561.765 km, 𝑒𝑒 = 0.7,
𝑖𝑖 = 63.4°, Ω = 278°,𝜔𝜔 = 270°. 
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Fig. 5.A Semi-major axis uncertainty map for Molniya 

object. 
 

 
Fig. 5.B Eccentricity uncertainty map for Molniya 

object. 
  
 

 
Fig. 5.C Inclination uncertainty map for Molniya object. 
  

 
Fig. 5.D RAAN uncertainty map for Molniya object. 
  

 
Fig. 5.E Argument of perigee uncertainty map for 

Molniya object. 
 

As usual, also the results for the Molniya object 
show an S-shaped high uncertainty area for 𝑎𝑎, 𝑒𝑒 and 𝜔𝜔, 
respectively Fig. 5.A, Fig. 5.B and Fig. 5.E. Comparing 
the S-area just obtained with that of the GTO, despite 
the similar shape of the orbit, in this case the S is 

sharper and the average uncertainty is a bit higher. 
These effects are probably due to the fact that the orbit 
is commensurable with the Earth period and the higher 
inclination of the Molniya orbit reduces the distances of 
the orbital plane from the observer position. As for the 
GEO and GTO case, these results show also the 
diagonal line for tracklets separated by 180° of true 
anomaly typical of the observer always outside the 
orbital plane. 

Looking now at Fig. 5.C and Fig. 5.D, it is 
interesting to notice how the different position of the 
perigee in the space produces a shift of the horizontal 
low uncertainty lines. In particular, for the GTO case 
these lines have positions 𝜈𝜈1 = 90° and 𝜈𝜈1 = 270° for 
the inclination and, although not clearly visible, 𝜈𝜈1 = 0° 
and 𝜈𝜈1 = 180° for the RAAN; for the Molniya case is 
vice versa. This is due to the fact that 𝜔𝜔 = 270°, then 
the line of the nodes coincides with the line of the semi 
latus rectum, while the apogee and the perigee are at the 
maximum angular distance from the equatorial plane. In 
these figures we see also high uncertainty diagonal lines 
for tracklets separated by 180° or 360° in true anomaly. 
Finally, it is important to remark two features which are 
visible in Fig. 5.C and Fig. 5.D: one for the inclination 
and one for the RAAN. Regarding 𝑖𝑖, it is interesting to 
notice the presence of an S-shaped low uncertainty area 
coincident with half a period separation between 
tracklets. This is probably due to the orientation of the 
orbit in the space. Being the apogee and the perigee the 
furthest points from the equatorial plane, at least one of 
the two tracklets which are separated in time by half a 
period is far enough from the this plane to clearly 
determine the inclination of the orbit. For the same 
reason the highest uncertainty areas for Ω are occurring 
for tracklets close to the apogee separated by one orbital 
period. 
 
IV.III Influence of the second observer 

The results showed until now are obtained 
considering a single observer. The next step of this 
study will be the evaluation of the effects on the 
uncertainty maps given by a second observer which is 
observing the target object precisely at the same time as 
the first observer. Also in this case the simulations are 
carried out in order to scan all possible combinations of 
tracklets in the same way as described in the paragraph 
III. The only difference is that for this study two series 
of observations per observer, acquired at the same time, 
are used in the orbit determination process. 

To perform this study the following orbital 
parameters are used: 𝑎𝑎 = 42164.173 km, 𝑒𝑒 = 0.5, 𝑖𝑖 =
60°,Ω = 0°,𝜔𝜔 = 0° and 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 = 1st observation. Two 
equatorial observers symmetrical to the Greenwich 
meridian are used, whose geodetic coordinates are: for 
the first Lat. 0°, Long. 45° West and Alt. 900 m; while 
for the second Lat. 0°, Long. 45° East and Alt. 900 m. 
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Fig. 6.A Semi-major axis uncertainty map with 2 

observers. 
 

 
Fig. 6.B Eccentricity uncertainty map with 2 observers. 
 

 
Fig. 6.C Inclination uncertainty map with 2 observers. 
 

 
Fig. 6.D RAAN uncertainty map with 2 observers. 
 

 
Fig. 6.E Argument of perigee uncertainty map with 2 

observers. 
 

 
Fig. 6.F Sum of parallax angles map with 2 observers. 

 
As one can see from Fig. 6.A, Fig. 6.B and Fig. 6.E 

which show respectively the uncertainty maps for 𝑎𝑎, 𝑒𝑒 
and 𝜔𝜔 the typical features are still present. In particular 
it is still possible to see the effect of the time distance 
between the two tracklets, in fact the maps show 
different features for the 1st and the 2nd orbital 
revolution and the average error is decreasing while the 
time distance is increasing. The S-shaped high 
uncertainty area is still present, as well as the high 
uncertainty diagonal line for tracklets separated by 180° 
and 360° in true anomaly for 𝑖𝑖 and Ω, see respectively 
Fig. 6.C and Fig. 6.D. However, some differences can 
be noticed w.r.t. the case of a single observer: first, the 
average uncertainty values are lower due to the higher 
number of observations, second some new features are 
appearing like the high uncertainty spots close to the S-
area for 𝑎𝑎, 𝑒𝑒 and 𝜔𝜔 or close to the diagonal line of 
tracklets separated by 180° for 𝑖𝑖 and Ω. The main 
improvement given by a second observer is given by the 
fact that, knowing the observers position and the 
directions to the target object, it is always possible to 
estimate the distance of the object from the observers 
and also its geocentric position. The quality of the 
estimation of such distances is proportional to the 
parallax angle given by the pointing directions of the 
observers to the object position, the smaller this angle 
will be the less accurate will be the distance estimation. 
The correspondence between the high uncertainty spots 
and the low parallax values is confirmed by Fig. 6.F 
which represents the sum of the parallax angles obtained 
for the first and for the second tracklets. 

The most important result obtained by the 
introduction of the second observer is given by the 
capability to estimate the distances. At the same time 
this improvement can be reduced by the dependency of 
the accuracy of the estimated parameters on the parallax 
of the observations. This quantity is of course dependent 
on the relative position between observers and object. 
To highlight this effect, the results of a second 
simulation are reported in Fig. 7.A, Fig. 7.B and Fig. 
7.C. These results are obtained with the same scenario 
previously utilized, but changing the inclination of the 
orbit to make it equatorial (𝑖𝑖 = 0.1°). Only the maps 
that showed significant changes are reported, namely 
those of 𝑎𝑎 and 𝑒𝑒. As one can see, instead of high 
uncertainty spots on the map, in this case some new 
features appeared which are intersecting the nominal S-
area. It is evident the correspondence between these 
new features with those regarding the parallax angles 
visible in Fig. 7.C. 
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Fig. 7.A Semi-major axis uncertainty map for an 

equatorial geosynchronous orbit with 2 observers. 
 

 
Fig. 7.B Eccentricity uncertainty map for an equatorial 

geosynchronous orbit with 2 observers. 
 

 
Fig. 7.C Sum of parallax angles map for an equatorial 

geosynchronous orbit with 2 observers. 
 

IV.IV Third tracklet 
The last results are obtained using three tracklets in 

the simulation of our orbit determination problem. The 
scenario used consists in a geosynchronous eccentric 
orbit with a single observer on the Earth’s surface. The 
Zimmerwald observatory is used as the observer 
position while the used orbital parameters are: 𝑎𝑎 =
42164.173 km, 𝑒𝑒 = 0.5, 𝑖𝑖 = 60°,Ω = 8°,𝜔𝜔 = 180° 
and 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 = 1st observation. For this simulation the time 
distance between the 1st and the 2nd tracklet is kept 
constant to 2 hours, while the distance of the 3rd one is 
varying from 10 seconds up to two orbital revolutions. It 
was decided to set up the scenario in this way to 
simulate the results of a survey with the first two 
tracklets and then to study how the accuracy of the 
estimated parameters is influenced by the position of a 
first follow-up (3rd tracklet). As for the other cases, the 
observer position at the epoch of the first observation is 
kept constant while all the other positions (respectively 
for the remaining observations of the 1st tracklet and 
those for the 2nd and the 3rd) are determined consistently 
with the Earth rotation rate and the time distance from 
the just mentioned observation epoch. Also in this case, 
the simulation is performed in order to analyse all 
possible combinations of tracklets positions. 

 

 
Fig. 8.A Semi-major axis uncertainty map with 3 

tracklets. 
 

 
Fig. 8.B Eccentricity uncertainty map with 3 tracklets. 
 

 
Fig. 8.C Inclination uncertainty map with 3 tracklets. 
 

 
Fig. 8.D RAAN uncertainty map with 3 tracklets. 
  

 
Fig. 8.E Argument of perigee uncertainty map with 3 

tracklets. 
 
As usual, the position of the 1st tracklet is 

represented in the 𝑦𝑦-axis while in the 𝑥𝑥-axis the position 
of the 3rd is shown. From these maps it is possible to see 
also the position of the 2nd tracklet, in particular it is 
roughly coincident with the first visible position of the 
third tracklet, this because the minimum time distance 
between the latter two is 10 seconds. Fig. 8.A shows the 
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uncertainty map obtained for the semi-major axis. As 
one can see the use of a third tracklet strongly reduces 
the average uncertainty values in comparison to those 
obtained for the case using only two tracklets. Despite 
that, as for the previous cases, the uncertainty tends to 
decrease with the increase of the time distance between 
tracklets; also the S-area is still visible but strongly 
reduced consistently to the higher number of 
observations and to the fact that the observer is always 
outside of the orbital plane. The part of the map where 
the S-area is sharper coincides with the case where the 
positions of the first two tracklets are close to the 
apogee because the slower is the object the shorter is the 
arc between the first two tracklets. It is still possible to 
see the minimum uncertainty diagonal line coincident 
with one period separation between first and third 
tracklet. It is interesting to notice that also another 
minimum line is appearing in this map and it coincides 
with the orbital period distance of the third tracklet from 
the second. 

Looking at Fig. 8.B and Fig. 8.E, as in the case of 
semi-major axis, it is still possible to distinguish the 
residuals of the classical S-area of half a period distance 
between observations and at the same time, the features 
which in the map of 𝑎𝑎 are minima regions, in the map of 
𝑒𝑒 and 𝜔𝜔 are high uncertainty regions. This because 
when the third tracklet is coincident with one of the first 
two one loses some useful information for the 
determination of 𝑒𝑒 and 𝜔𝜔. In Fig. 8.B, two horizontal 
lines of minimum uncertainty appeared for positions of 
the first two tracklets which are symmetrical w.r.t. the 
line of the apsides. 

Finally, looking at the maps obtained for 𝑖𝑖 and Ω 
(respectively Fig. 8.C and Fig. 8.D), it is possible to see 
how for positions of the 3rd tracklet which are coincident 
with one of the previous two there is a loss of 
information which produces high uncertainty values. 
This loss is even more evident, in the inclination map, 
for tracklets whose positions are close to the apogee; 
these positions are, in fact, coincident with the lines of 
the nodes. Both maps show two horizontal lines of 
minimum uncertainty, these appear when either the first 
or the second tracklet is at the maximum angular 
distance from the line of the nodes (for 𝑖𝑖) or is on the 
line of the nodes (for Ω). 

 
V. CONCLUSION AND FUTURE WORKS 

The orbit determination/improvement process is a 
fundamental step of the space debris research. Due to 
the high number of object and the limitations of the 
instruments used for the measurements acquisition, it is 
necessary to optimize the use of the time available for 
observations, being it for surveys or follow-ups. This 
paper presented the results obtained by a study whose 
aim was to highlight the dependency of the accuracy of 

the parameters, estimated during an orbit determination, 
on the object-observer relative geometry. The study was 
performed by analysing the output covariance matrix 
obtained from the simulation of a LSQ adjustment 
process. The results of the simulations allowed us to 
create an uncertainty map for each estimated parameter, 
which shows the uncertainties as a function of the 
relative positions of the observation series. At the 
beginning, a “standard” orbit is used to evaluate the 
influence of the observer position; successively the 
effects of each orbital parameter are analysed. These 
first simulations allowed us to understand the main 
factors which are influencing the accuracy of the results 
of an orbit determination like: the time interval between 
tracklets, the inclination of the orbit, the angular 
distance from the line of the nodes and from the lines of 
the apsides, the influence of the observer position w.r.t 
the orbital plane, the distance of the object in terms of 
Earth’s parallax, the arc-length of the tracklet and the 
ratio between orbital period and sidereal day. 
Successively, two more complex scenarios are analysed. 
First the case of two observers which are observing 
synchronously the same object is studied; second, the 
case of three series of observations is analysed. The 
main advantages given by the second observer can be 
summarized in the capability to estimate distances 
knowing the two observers positions and the target 
direction from the observer; at the same time these 
results showed also their strong dependency from the 
parallax angle given by the pointing directions of the 
observers to the object position. To be more precise, the 
smaller is the parallax angle the higher is the uncertainty 
obtained for the estimated parameters. The analysis of 
the case with three series of observations showed 
mainly that the main effects, noticed in the case of the 
two tracklets, are amplified by the relative combinations 
among the three tracklets. 

The proposed method can be also used to study more 
general scenarios and can be applied also to different 
orbital regimes. For example an interesting application 
could be to use two or more observers which are not 
observing at the same time in order to optimize also the 
observation strategy of a network of telescopes or to 
simply evaluate the improvements given by a second 
observer for a Low Earth Orbit object. Finally this 
method can be used to study what kind of improvement 
can be obtained by another kind of observable, like 
ranges, or even by merging different observables in the 
orbit determination problem (e.g. angular measurement 
and ranges). 
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