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ABSTRACT 

The Astronomical Institute of the University of Bern 
(AIUB) is conducting several search campaigns for 
orbital debris. The debris objects are discovered during 
systematic survey observations. In general only a short 
observation arc, or tracklet, is available for most of 
these objects. From this discovery tracklet a first orbit 
determination is computed in order to be able to find the 
object again in subsequent follow-up observations. The 
additional observations are used in the orbit 
improvement process to obtain accurate orbits to be 
included in a catalogue. 
In this paper, the accuracy of the initial orbit 
determination is analyzed. This depends on a number of 
factors: tracklet length, number of observations, type of 
orbit, astrometric error, and observation geometry. The 
latter is characterized by both the position of the object 
along its orbit and the location of the observing station. 
Different positions involve different distances from the 
target object and a different observing angle with 
respect to its orbital plane and trajectory. The present 
analysis aims at optimizing the geometry of the 
discovery observations depending on the considered 
orbit. 
 
1. INTRODUCTION 

The Astronomical Institute of the University of Bern 
(AIUB) is conducting optical search campaigns for high 
altitude objects using the ESA Space Debris Telescope 
(ESASDT) on Tenerife on behalf of ESA. The aim of 
these campaigns is to improve the statistical information 
about the populations of objects in Geostationary Orbits 
(GEO) [1], Geostationary Transfer Orbits (GTO) [2], 
and Medium Earth Orbits (MEO) [3]. A large amount of 
faint and unknown objects, as well as a new population 
of objects with a very high area-to-mass ratio have been 
observed within these surveys [4]. In general only a 
short observation arc is available for most of these 
objects. These short arcs do not allow determining an 
accurate full six parameter orbit. Normally, circular 
orbits are determined instead. A circular orbit is a good 
approximation for GEO, but not for eccentric orbits like 
GTO. Possible concepts for a catalogue of objects were 
developed in the framework of ESA studies for a 
European Space Surveillance Network [5][6]. AIUB 
participated in these studies, where the work focused on 
the selection of optical detectors, the development of 
survey strategies for high-altitude orbits, and on the 

performance estimation. According to the developed 
concepts, to improve the quality of the determined 
orbits for newly discovered objects, follow-up 
observations are conducted. Since the discovery track of 
an object usually consists of a small number (two to ten) 
of observations and the track length is only a few 
minutes, follow-up observations are needed in order to 
get a longer observation arc. Follow-ups from several 
nights are needed if the orbit should be accurate enough 
to be included into a catalogue. Several studies have 
investigated the optimal sequence of follow-ups and the 
time intervals between subsequent observations to 
achieve the best orbit accuracy [7][8]. From the 
investigations it resulted that e.g. for GEO at least two 
follow-up tracks are necessary to recover a discovered 
object during the following night. The ideal time 
interval between the tracks was found to be one hour. 
This allows recovering the object with the small field of 
view (FOV) of 0.7” at the ESASDT. The geometry of 
the observation is relevant for the accuracy of the orbit 
determination. The geometric factors essentially 
comprise the distance from the station to the object and 
the angle between the line of sight and the trajectory of 
the object. In this work the dependence of the accuracy 
in the orbit determination on these parameters is 
investigated.  
 
2. CIRCULAR ORBITS 

To illustrate the importance of the observation geometry 
some preliminary results in the case of circular orbits 
are examined. The geometry considered in the analysis 
of the problem is illustrated in Figure 1. The orbit plane 
coincides with the Earth equatorial plane. The angle α 
describes the geocentric difference in right ascension of 
the object in the positions C and D. In the case of one 
station A the object can be observed at the zenith 
(position C) or later at the position D.     
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Figure 1. Geometry with circular orbit in the equatorial 
plane. The angle α indicates the difference in longitude 

or right ascension. 

Simulations for GEO, MEO, and LEO orbits were 
performed with a mean astrometric error of 0.5” with 
tracklets consisting of three observations within 15 s. 
The initial orbit determination was calculated using the 
“Celmech” software environment developed at AIUB 
[9]. We analyse the degree of accuracy in the semimajor 
axis achieved in the orbit determination process. Figure 
2 shows the formal error Δa in the semimajor axis as a 
function of the angle α for orbits in LEO, MEO, and 
GEO. The formal error is mainly dependent on two 
distinct components: the observation error and the 
length of the observed arc. There is obviously also a 
dependence from the number of observations, but we 
will not consider it in this study. In the observation error 
relevant for our considerations is the error Δα regarding 
the topocentric measured position in right ascension. 
The influence of Δα in the formal error Δa can be 
estimated using geometric considerations. Figure 3 
shows for GEO the observation error Δαgeo at the 
geocenter as a function of the angle α for different error 
values Δα indicated in the color bar. The error at the 
geocenter is calculated propagating the measurement 
error Δα in the transformation formula from topocentric 
to geocentric coordinates. After this transformation the 
orbit determination in the simulations can be performed 
considering observations with error Δαgeo from a 
hypothetical station at the geocenter. In Figure 4 the 
error Δa as a function of the arc length is plotted for the 
three types of orbit. For more details on the results in 
this paragraph consult [10]. 
  

 
Figure 2. Formal error Δa in the semimajor axis as a 

function of α for LEO, MEO, and GEO orbits. 

 
Figure 3. Error Δαgeo at the geocenter vs. angle α for 

different error values Δα for orbits in GEO. 

 
Figure 4. Formal error Δa as a function of the arc length 
with Δαgeo = 0.5” and three observations within the arc 

for LEO, MEO, and GEO orbits. 



 

3. ELLIPTIC ORBITS 

We want to extend the analysis to elliptic orbits. The 
goal is the relative estimate of the accuracy in the initial 
orbit determination. Thus not the absolute accuracy is 
estimated, only the relative accuracy variation as a 
function of the observer and object position. For this 
purpose a simplistic approach is used. For Keplerian 
orbits the following relations hold, 
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where: 
a = semimajor axis 
e = eccentricity 
r = geocentric radius to the orbiting object 
ϴ = true anomaly 
μ = gravitational parameter 
 
Inserting Eq. 1 into Eq. 2 eliminates the radius r:  
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The time derivative of Eq. 3 yields: 
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From Eq. 4 it is possible to calculate the partial 
derivatives of e: 
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The partial derivatives of a can be calculated using the 
explicit derivatives of a,  
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and the chain rule (e.g. w.r.t. ϴ) 
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The astrometric error is decomposed into a component 
in the orbital plane and perpendicular to it and 
transformed to errors at the geocenter as in the circular 
orbits case. Here, similarly to α we define the in-plane 
error Δϴ in the true anomaly and the error Δn in the 
vector n normal to the orbital plane. The transformation 
from the reference system I to the system embedded in 
the orbital plane R gives the partial derivatives for the 
inclination i and the ascending node Ω:  
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where Rij is the rotation matrix based on the Euler 
angles, and ni are the components of n. 
 
The total error Δa (similarly for e) is given by: 
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With the above definition of θ∆  the error in the 
semimajor axis tends to be overestimated. This reflects 
the worst case, where the computation of the orbit is 
based on angular accelerations. Other methods can 
determine the orbit more efficiently using velocity 
differences. Hence, to represent those methods in the 
later simulations the error Δa is calculated only up to 
the first time derivative term. 
In analogous way for Δi (similarly for Ω): 
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4. SIMULATIONS 

In the following diagrams the estimated error is 
calculated using Eq. 14 and Eq. 15 for a given orbit as a 
function of the true anomaly ϴ of the observed object 
and of the longitude λ of the observer, assuming the 
prime meridian parallel to the vernal point and latitude ϕ 
= 0°. The considered orbit has a = 42’000 km, i = Ω = ω 
= 0°, and e = 0.1 or e = 0.5. The assumed astrometric 
error is 0.5’’ and the tracklet length Δt = 15 s. 
Figure 5 and Figure 6 show the relative error in the 
semimajor axis with e = 0.1 and e= 0.5 respectively, 
while Figure 7 and Figure 8 illustrate the dependency 
related to the eccentricity. The triangle regions in dark 
blue indicate that the object is not visible. From the 
diagrams it turns out that the semimajor axis can be 
better determined close to the perigee. This is probably 
due to the fact that, keeping a constant tracklet time 
interval, the arc covered is the longest at the perigee. 
The situation is accentuated with a bigger eccentricity. 
On the other hand the eccentricity is bad determined at 
perigee and apogee, where the angular acceleration is 
the smallest. If the eccentricity of the orbit is increased 
the region with higher accuracy is shifted towards 
smaller values of the true anomaly. 
 

 
Figure 5. Relative error of semimajor axis Δa with 

eccentricity e = 0.1 as a function of true anomaly ϴ and 
longitude λ. 

 

 
Figure 6. Relative error of semimajor axis Δa with 

eccentricity e = 0.5 as a function of true anomaly ϴ and 
longitude λ. 

 

 
Figure 7. Relative error of eccentricity Δe with 

eccentricity e = 0.1 as a function of true anomaly ϴ and 
longitude λ. 

 

 
Figure 8. Relative error of eccentricity Δe with 

eccentricity e = 0.5 as a function of true anomaly ϴ and 
longitude λ. 



 

 
In Figure 9 and Figure 10 the error variation in the 
inclination with e = 0.1 and e= 0.5 are indicated. Figure 
11 and Figure 12 exhibit the diagrams concerning the 
ascending node error. The minimal error in inclination 
is around 90° true anomaly. In this region the maximal 
elevation w.r.t. the equatorial plane is reached, which 
translates into a better accuracy of the plane definition. 
With higher eccentricity the error strongly increases in 
the non-optimal region around the apogee. The right 
ascension of the ascending node is better determined 
close to the node itself. For higher eccentricities the 
region with the maximal error is shifted towards bigger 
values of true anomaly. 

 
Figure 9. Relative error of inclination Δi with 

eccentricity e = 0.1 as a function of true anomaly ϴ and 
longitude λ. 

 

 
Figure 10. Relative error of inclination Δi with 

eccentricity e = 0.5 as a function of true anomaly ϴ and 
longitude λ 

 

 
Figure 11. Relative error of ascending node ΔΩ with 

eccentricity e = 0.1 as a function of true anomaly ϴ and 
longitude λ. 

 

 
Figure 12. Relative error of ascending node ΔΩ with 

eccentricity e = 0.5 as a function of true anomaly ϴ and 
longitude λ. 

 
5. CONCLUSIONS 

For the examined situations the considered errors in the 
orbital parameters are given by contributions according 
to the position of the object relative to the observer and 
the length of the observed arc. The contribution to the 
astrometric accuracy regarding the relative position can 
be calculated from the topocentric errors reduced to 
errors at the geocenter and the influence of arc length 
can be evaluated in the geocentric geometry. The error 
in the orbital parameters a, e, i, Ω for a given 
observation error and arc length can be estimated using 
a simple Keplerian model, where the error in the angular 
velocity and angular acceleration is given by the angular 
position error and the tracklet time interval. The total 
error is calculated through error propagation of angular 
position (for I and Ω), or also velocity, and acceleration 
(for a and e). Still, only the relative estimate of the error 
can be determined and not absolute values because the 



 

approximation for the angular velocity and acceleration 
error is simplistic. Also for this reason not all derivative 
terms are considered, depending on the estimated orbital 
parameter. 
Simulations were conducted for an elliptic orbit varying 
true anomaly of the object and longitude of the observer 
on the Equator. The results of the simulations can be 
easily interpreted with geometric considerations. The 
semimajor axis can be better determined close to the 
perigee where the arc is longest. The eccentricity is bad 
determined at perigee and apogee, where the angular 
acceleration is smallest. The minimal error in inclination 
occurs in the region where the maximal elevation w.r.t. 
the equatorial plane is reached, while the position of the 
ascending node is better determined close to the node 
itself.  
The illustrated method serves as a quick way to estimate 
under which observation conditions the error in the orbit 
determination can be minimized, given an orbit and the 
observing station. Error maps similar to the ones shown 
above can be easily simulated with other variables or 
other orbits using the presented formalism.  
 
6. REFERENCES 

1. Schildknecht, T., R. Musci, M. Ploner, G. Beutler, 
W. Flury, J. Kuusela, J. de Leon Cruz, L. de Fatima 
Dominguez Palmero, Optical observations of space 
debris in GEO and in highly-eccentric orbits, 
Advances in Space Research, 34, 2004 

2. Schildknecht, T., T. Flohrer, R. Musci, R. Jehn, 
Statistical analysis of the ESA optical space debris 
surveys, Acta Astronautica, 63, 2008  

3. Hinze, A., T. Schildknecht, A. Vananti, H. Krag, 
Results from first space debris survey observations 
in MEO, Proceedings of European Space 
Surveillance Conference, Madrid, Spain, 2011 

4. Musci, R., T. Schildknecht, M. Ploner, Analyzing 
long observation arcs for objects with high area-to-
mass ratios in geostationary orbits, Acta 
Astronautica, 66, 2010 

5. Flohrer, T., T. Schildknecht, R. Musci, E. 
Stöveken, Performance estimation for GEO space 
surveillance, Advances in Space Research, 35, 2005 

6. Flohrer, T., T. Schildknecht, R. Musci, Proposed 
strategies for optical observations in a future 
European Space Surveillance network, Advances in 
Space Research, 41, 2008 

7. Musci, R., T. Schildknecht, M. Ploner, Orbit 
improvement for GEO objects using follow-up 
observations, Advances in Space Research, 34, 
2004 

8. Musci, R., T. Schildknecht, M. Ploner, G. Beutler, 
Orbit improvement for GTO objects using follow-
up observations, Advances in Space Research, 35, 
2005 

9. Beutler, G., Methods of Celestial Mechanics, 
Springer, Berlin, 2004 

10. Vananti, A., T. Schildknecht, Dependence of Orbit 
Determination Accuracy on the Observer Position, 
Proceedings of 6th European Conference on Space 
Debris, Darmstadt, Germany, 2013 

 


	1. INTRODUCTION
	2. CIRCULAR ORBITS
	3. ELLIPTIC ORBITS
	4. SIMULATIONS
	5. CONCLUSIONS
	6. REFERENCES

