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A BOUNDARY VALUE PROBLEM APPROACH TO TOO-SHORT
ARC OPTICAL TRACK ASSOCIATION

K. Fujimoto∗, K. T. Alfriend†, and T. Schildknecht‡

Given a short-arc optical observation with estimated angle-rates, the admissible
region is a compact region in the range / range-rate space defined such that all
likely and relevant orbits are contained within it. An alternative boundary value
problem formulation has recently been proposed where range / range hypotheses
are generated with two angle measurements from two tracks as input. In this pa-
per, angle-rate information is reintroduced as a means to eliminate hypotheses by
bounding their constants of motion before a more computationally costly Lambert
solver or differential correction algorithm is run.

INTRODUCTION

One problem of concern in space situational awareness (SSA) is the association of observations
of resident space objects (RSOs) and the initial determination of their orbits thereafter. Due to
the vastly larger number of RSOs compared to sensors, only a limited number of observations are
available per night per object, each over observation arcs that can be as short as a few seconds.
Therefore, a single track, regardless of measurement type, often does not contain sufficient infor-
mation in order to reliably estimate the observed object’s state or conduct follow-up observations.
Traditional association methods, then, can perform poorly as they often rely upon the quality of the
orbit determination solution to determine associations. This dependency of the association on the
initial orbit determination (IOD) and vice versa is at the crux of the so called too-short arc (TSA)
problem.

The admissible region (AR) approach has been studied in recent years as one solution tech-
nique [1–8]. Given a short-arc series of optical measurements, or a tracklet, the angle and angle-rate
at epoch is estimated, most commonly by a least-squares fit to a polynomial kinematic model. A
compact region in the range / range-rate space is defined based on a set of physical constraints such
that all likely and relevant orbits are contained within it [9–11]. In this initial value problem inter-
pretation, each point in the admissible region, combined with the angular variables, corresponds to
a hypothesis of the full 6-dimensional state that the observed object may have taken. Since two vari-
ables are unknown per observation, only two tracklets are required for association and subsequent
state estimation instead of three for geometric IOD. Therefore, many branches of the combinatorial
tree structure of observations may be eliminated in runtime O(mn2), where n is the total number
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of tracklets to be associated and m is the number of range / range-rate hypotheses made per track-
let pair, before running the full problem of associating three or more tracklets. With potentially
thousands of tracklets gathered every night, an AR-like approach can end up being more computa-
tionally efficient overall than conventional techniques even though it may be slower per individual
association run [12].

For extremely short tracklets spanning ∼ 100 seconds, however, the angle-rates are so poorly de-
termined that both false positive and negative association outcomes become prevalent. As such, an
alternative boundary value problem (BVP) formulation of the AR has been proposed by Schumacher
et al., where range / range hypotheses are generated and then evaluated by ultimately solving Lam-
bert’s problem with two angle measurements from two tracklets as input [12]. A similar approach
is introduced earlier by Virtanen, et al. in the context of short-arc IOD for heliocentric objects, but
in their work, the range bounds are not rigorously defined [13]. Indeed, in Schumacher, et al., many
range / range hypotheses are found to be eliminated based on orbital element bounds as well as spe-
cial closed-form solutions to Lambert’s problem. Siminski, et al. have also discussed benefits of a
BVP AR formulation in the context of tracklet association and IOD posed as an optimization prob-
lem [14]. In this paper, angle-rate information is reintroduced in the BVP AR formulation but not
as a state variable of the hypothesized objects; rather, it is used as a means to bound their constants
of motion. These bounds further eliminate solutions before a more computationally costly Lambert
solver or differential correction algorithm is run even when the angle-rate estimates are poor. Hy-
pothesis gating has been discussed for the original initial value problem (IVP) formulation of the
AR by Gadaleta, et al [15], but their technique is not directly applicable for the BVP formulation as
it requires the propagation of attributable orbital elements and their associated uncertainties, which,
in turn, would involve a Lambert solver.

The outline of the paper is as follows. Both the IVP and BVP formulations of the AR are first
introduced (The Range / Range Admissible Region). Next, the proposed criteria for the constants
of motion are developed along with analyses of how errors in the tracklet variables map to them
(Method). Finally, these criteria are tested with simulated optical observations (Results) of medium
Earth (MEO), high Earth (HEO), and geosynchronous orbit (GEO) objects. The proposed criteria
succeeds in eliminating over 30% of possible tracklet pairs as unassociated even before conducting a
Lambert solver based IOD. The use of angular-rate data, with their potentially large errors taken into
account, improves the computational viability of the BVP formulation of IOD via ARs, especially
for extremely short arcs.

THE RANGE / RANGE ADMISSIBLE REGION

In the IVP formulation of the AR, for some tracklet, each range ρ / range-rate ρ̇ hypothesis
completes a full 6-dimensional kinematic state. That is, given tracklet (α1, δ1, α̇1, δ̇1) in terms of
right ascension α, declination δ, and their time derivatives at time t1, and a hypothesis (ρ1, ρ̇1)
associated with this tracklet, the position r1 and velocity ṙ1 are fully defined

r1 = ρ1[cosα1 cos δ1, sinα1 cos δ1, sin δ1] (1)

ṙ1 = ρ̇1[cosα1 cos δ1, sinα1 cos δ1, sin δ1] + ρ1α̇1[− sinα1 cos δ1, cosα1 cos δ1, 0]

+ ρ1δ̇1[− cosα1 sin δ1,− sinα1 sin δ1, cos δ1] (2)

Then, based on some equations of motion (EoM)

r̈ = f(r, ṙ, t), (3)
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the position r(t) and velocity ṙ(t) for any arbitrary time t may be solved for with r(t1) = r1
and ṙ(t1) = ṙ1 as initial conditions. Any range / range-rate hypothesis set for any given tracklet
uniquely defines an orbit, but not all such orbits are feasible, likely, or relevant. Those that are lie
in a compact region (i.e., the AR) defined in the range / range-rate space based on a set of physical
criteria. The criteria may directly bound the hypothesized variables, the orbital energy, the periapsis
or apoapsis, or orbital elements of the objects to be observed, and may also reflect the limitations to
observational capabilities or the type of objects of interest to the analyst.

In the BVP formulation, a set of range values associated with two separate tracklets is hypothe-
sized instead of range and range-rate for a single tracklet. Given tracklet (α2, δ2, α̇2, δ̇2) at time t2
in addition to the tracklet at time t1, positions r1 and r2 are fully defined for range / range hypoth-
esis set (ρ1, ρ2); r(t) and ṙ(t) may again be solved for based on eq. (3). The BVP under two-body
dynamics is better known as Lambert’s problem, for which many solution techniques exist [16]. In
Schumacher et al., the criteria which define the AR are based on bounds on the Keplerian orbital
elements of the observed object [12]

a ∈ [aMIN, aMAX], e ∈ [eMIN, eMAX], i ∈ [iMIN, iMAX]. (4)

Bounds may further be defined for the right ascension of the ascending node Ω, but such bounds
are inapplicable for most survey-like observation strategies and thus are ignored in this paper. The
semi-major axis and eccentricity element bounds geometrically constrain the minimum perigee and
maximum apogee

aMIN(1− eMAX) ≤ ‖r‖ ≤ aMAX(1 + eMAX), (5)

which can be transformed into range bounds for either range value in the hypothesis set as

ρ ≥ −(R · u) +
√

(R · u)2 + [a2MIN(1− eMAX)2 −R ·R] (6)

0 ≤ ρ ≤ −(R · u) +
√

(R · u)2 + [a2MAX(1 + eMAX)2 −R ·R], (7)

where R is the position of the observer, u is the unit vector along the range direction of the obser-
vation, and an Earth-based observer is assumed. Similarly, from the inclination bounds,

n = ± r1 × r2
‖r1 × r2‖

(8)

cos iMAX ≤ n · k ≤ cos iMIN, (9)

where k is a unit vector in the Z-direction in the Earth centered inertial frame. Next, constraints
on range may be derived based on special solutions to Lambert’s problem. Namely, the minimum
possible semi-major axis a0 and eccentricity e0 solutions are given as [17]

a0 =
‖r1‖+ ‖r2‖+ ‖r2 − r1‖

4
(10)

e0 =
| ‖r1‖ − ‖r2‖ |
‖r1 − r2‖

. (11)

From the orbital element bounds, a0 ≤ aMAX and e0 ≤ eMAX are required. Finally, the lower
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bound (i.e., parabolic) time of flight ∆tp is given as

λ =

√
‖r1‖+ ‖r2‖ − ‖r2 − r1‖
‖r1‖+ ‖r2‖+ ‖r2 − r1‖

(12)

∆tp =
4

3

√
a30
µ

(1− sλ3), (13)

where s = ±1 depending on the short- or long-way solution and µ is the standard gravitational
parameter. Consequently, ∆tp ≤ (t2 − t1) is required.

METHOD

In this section, three additional criteria are introduced to eliminate range / range hypotheses based
on both angles and angle-rates data from the tracklet, the latter potentially being poor. The inclu-
sion of angle-rates allows for the use of constants of motion to eliminate hypotheses, namely: 1.
whether the minimum possible orbital energy meets semi-major axis bounds, 2. whether the mini-
mum possible angular momentum magnitude meets eccentricity bounds, and 3. whether the angular
momentum direction is consistent with the observed angle-rates. The deterministic bounds are first
derived. Then, the map from the errors in the observed variables to the constants of motion is
characterized and subsequently incorporated in the association process.

Energy Bound

The orbital energy E of an object in terms of topocentric spherical coordinates is given as

2E = ρ̇2 + w1ρ̇+ F (ρ), (14)

where coefficient w1 is determined by the input parameters (namely, the tracklet angles, angle-rates,
and the observer location) and F (ρ) is a function of the range and input parameters. Since range is
hypothesized and may be assumed as known, if semi-major axis bounds [aMIN, aMAX] are specified
and if the quadratic equation with respect to range-rate

2EMAX = 2

[
− µ

2aMAX

]
= ρ̇2 + w1ρ̇+ F (ρ) (15)

does not have a real solution, the range hypothesis cannot be true. Note that it is not necessary to
check the case for aMIN as

− µ

2aMIN
≤ − µ

2aMAX
(16)

for aMIN > 0, aMAX > 0.

If the discriminant D of eq. (15) is negative, then no real solutions for range-rate exist for the
particular range hypothesis chosen. This inequality would, in turn, bound range hypotheses, but
large angle-rate errors would potentially change the sign of D. Thus, one must determine how
observational errors map into the discriminant. The first-order Taylor series expansion of this map
is examined in this paper because a linear map will allow one to carry over a Gaussian assumption
of the observed variables into the discriminant. That is, for an observation covariance matrix R, the
variance σ2D of the discriminant is then computed as

σ2D =

[
∂D
∂X

]
R

[
∂D
∂X

]T
, (17)
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where X = (α, δ, α̇, δ̇) are the tracklet variables. The criterion for range hypotheses consistent with
energy bounds may be modified so that, if

D + nDσD < 0, (18)

then the range hypothesis is eliminated with some level of confidence specified by nD. D is concave
down as a function of range

D = −4[α̇2 cos2 δ + δ̇2]ρ2 − 4[2α̇ (−q̇1 sinα cos δ + q̇2 cosα cos δ)

+ 2δ̇ (−q̇1 cosα sin δ − q̇2 sinα sin δ + q̇3 cos δ)]ρ− 4q̇21 − 4q̇22 − 4q̇23

+
8µ√

ρ2 + ρ (2q1 cosα cos δ + 2q2 sinα cos δ + 2q3 sin δ) + rE2
+ 8EMAX

+ (2q̇1 cosα cos δ + 2q̇2 sinα cos δ + 2q̇3 sin δ)2 , (19)

where q = (q1, q2, q3) is the observer location and q̇ = (q̇1, q̇2, q̇3) is the observer velocity. Viewed
as a function of the angle-rates, D is similarly a concave down quadratic polynomial with maxima
located at

α̇D,MAX = − q̇2 cosα− q̇1 sinα

ρ cos δ
(20)

δ̇D,MAX =
sin δ(q̇1 cosα+ q̇2 sinα)

ρ
, (21)

respectively. Next, taking partial derivatives,

∂D
∂α

= −4[2α̇(−q̇1 cosα cos δ − q̇2 sinα cos δ) + 2δ̇(q̇1 sinα sin δ − q̇2 cosα sin δ)]ρ

− 4µρ(−2q1 sinα cos δ + 2q2 cosα cos δ)

[ρ2 + ρ(2q1 cosα cos δ + 2q2 sinα cos δ + 2q3 sin δ) + rE2]3/2

+ 2(2q̇1 cosα cos δ + 2q̇2 sinα cos δ + 2q̇3 sin δ)(2q̇2 cosα cos δ − 2q̇1 sinα cos δ) (22)

∂D
∂δ

= 8α̇2ρ2 cos δ sin δ + 8q̇1δ̇ρ cosα cos δ + 8q̇2δ̇ρ sinα cos δ + 8q̇2α̇ρ cosα sin δ

− 8q̇1α̇ρ sin δ sinα+
8µ (q1ρ cosα sin δ + q2ρ sin δ sinα− q3ρ cos δ)

(2q1ρ cosα cos δ + 2q2ρ cos δ sinα+ 2q3ρ sin δ + rE2 + ρ2)3/2

− 8q̇21 cos2 α cos δ sin δ − 16q̇1q̇2 cosα cos δ sinα sin δ − 8q̇22 cos δ sin2 α sin δ (23)

∂D
∂α̇

= −8α̇ρ2 cos2 δ − 8q̇2ρ cosα cos δ + 8q̇1ρ cos δ sinα (24)

∂D
∂δ̇

= −8δ̇ρ2 + 8q̇1ρ cosα sin δ + 8q̇2ρ sinα sin δ. (25)

The non-linear behavior of D with respect to X is now studied based upon a Monte Carlo (MC)
sensitivity analysis. 1000 observation geometries are generated from an observatory at 20.710◦

inertial latitude and randomly chosen inertial longitude to a randomly generated object with semi-
major axis / eccentricity / inclination bounds a ∈ [15000 km, 45000 km], e ∈ [0, 0.8], and i ∈
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[0, 70◦], respectively. Objects with (periapsis altitude) < 200 km and (apoapsis altitude) > 60,000
km are rejected. All other orbital elements are chosen from a uniform distribution but constrained
such that they appear at least 15◦ above the local horizon at the time of the observation. The latitude
of the observatory corresponds to Haleakala, Maui, although any effects due to the altitude of the
observatory are ignored. Dynamics are assumed to be point mass only and the Earth is assumed to
rotate uniformly about the Earth centered inertial Z-axis.

We now derive an expression for the observation covariance matrix when the angle measurements
are fit to a linear kinematic model at the tracklet epoch. A similar derivation is given in Maruskin,
Scheeres, and Alfriend, but their derivation fits a quadratic kinematic model to the midpoint of the
tracklet by making several simplifications [1]. In our case, we focus on extremely short tracklets
where a linear model is sufficient. Suppose N image frames are included in a tracklet, where the
frames are taken at times t0, t1, . . . , tN−1. To fit the right ascension α(t), say, to a linear model

α(ti) = α0 + α̇0(ti − t0), (26)

for x0 = [α0, α̇0], the partials H̃i are

H̃i =
∂α(ti)

∂x0
= [ 1 ti − t0 ]. (27)

As such, the information matrix Λ accumulated over all observations is

Λ = σ−2
N−1∑
i=0

H̃T
i H̃i = σ−2

N−1∑
i=0

[
1 ti − t0

ti − t0 (ti − t0)2
]
, (28)

where σ is the standard deviation of the measurement error. Now,

N−1∑
i=0

1 = N (29)

N−1∑
i=0

ti − t0 = ∆t
N−1∑
i=0

i =
N(N − 1)∆t

2
(30)

N−1∑
i=0

(ti − t0)2 = ∆t2
N−1∑
i=0

i2 =
N(N − 1)(2N − 1)∆t2

6
, (31)

where ∆t = tN−1/(N − 1) is the time between frames. Substituting back into eq. (28) and taking
the inverse, the covariance R is

R = Λ−1 = σ2


2(2N − 1)

N(N + 1)
− 6

N(N + 1)∆t2

− 6

N(N + 1)∆t2
12

N(N − 1)(N + 1)∆t2

 . (32)

In the current analysis, the tracklet length is set to tN−1 = 4 seconds with each tracklet containing
N = 5 images spaced equally in time. For each of the 1000 observation geometries generated, 1000
instances of unbiased Gaussian measurement error are simulated separately for each variable in the
tracklet based upon the corresponding variances in the covariance R derived above. That is, the
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Figure 1. Histograms over all observation geometries sampled of the skewness (left)
and kurtosis (right) of the discriminant distribution based on variations in a single
variable in the tracklet.

measurement errors are assumed to be small enough such that the non-linear behavior of the energy
is the sum of variations due to each individual component in the tracklet.

Figure 1 are histograms of the skewness and kurtosis of the energy distribution over all observa-
tion geometries sampled, separated by the variable to which noise is added in the tracklet. The range
hypothesis is fixed to the true value of range as one is most interested in cases where the true range
hypothesis is falsely eliminated. The energy remains nearly Gaussian (skewness ≈ 0, kurtosis ≈ 3)
when α, δ, or α̇ are varied. The Jarque-Bera normality test corroborates this observation with less
than 12% of sample orbits rejecting the null hypothesis (i.e., distribution is normal) with probability
of false rejection p < 0.05, as seen in Figure 2. The p-value criterion indicates that one can expect
at most 5% of the rejections to be due to random sampling error. The observed rejection rates,
especially for the angle data, are consistent with this expectation. This property clearly does not
hold, however, when δ̇ is varied, with 478 of the 1000 MC objects rejecting the null hypothesis with
p < 0.05. Since δ ≈ 0 and δ̇ ≈ 0 for many objects in the orbit element bounds given, δ̇ ≈ δ̇D,max,
and thus a linear approximation of D is inappropriate for such objects, as illustrated in an example
in Figure 3. Nonetheless, errors in the tracklet are unlikely to overly increaseD beyond the +nDσD
upper bound determined linearly since non-linearities tend to skew the distribution negatively. Con-
sequently, the hypothesis rejection criterion is modified as in eq. (18) in this paper with nD = 3 as
false negative association outcomes are limited. The probability of missing an association due to
measurement errors is at most 0.26998%.

Angular Momentum Magnitude Bound

Similar to the energy, the angular momentum magnitude h of an object may be related to a
polynomial of range-rate

2Eh2 = [ρ̇2 + w1ρ̇+ F (ρ)][c0ρ̇
2 + P (ρ)ρ̇+ U(ρ)], (33)

where c0 > 0 is a coefficient determined by the input parameters, and P (ρ) and U(ρ) are functions
of the range and input parameters. Thus, if eccentricity bounds [eMIN, eMAX] are specified and if
the quartic equation

2Eh2
∣∣
e=eMAX

= −µ2(1− e2MAX) = [ρ̇2 + w1ρ̇+ F (ρ)][c0ρ̇
2 + P (ρ)ρ̇+ U(ρ)] (34)
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does not have a real solution, the range hypothesis cannot be true and is subsequently eliminated.
Note that it is not necessary to check the case for eMIN as −µ2(1 − e2MIN) ≤ −µ2(1 − e2MAX).
Instead of examining the discriminant of this quartic equation, the minima of

G(ρ̇; ρ) = [ρ̇2 + w1ρ̇+ F (ρ)][c0ρ̇
2 + P (ρ)ρ̇+ U(ρ)] + µ2(1− e2MAX) (35)

= c0ρ̇
4 + (P + c0w1)ρ̇3 + (U + c0F + w1P )ρ̇2 + (PF + w1U)ρ̇+ UF + µ2(1− e2MAX) (36)

is analytically solved for, where the semi-colon indicates that ρ is hypothesized and may be assumed
as known. Viewed as a function of the angle-rates, G is similarly a quartic polynomial. For there to
be a real solution, there must exist some ρ̇ = ρ̇m that satisfies

G(ρ̇ = ρ̇m; ρ) ≡ Gm < 0 (37)

dG

dρ̇

∣∣∣∣
ρ̇=ρ̇m

= 0 (38)

d2G

dρ̇2

∣∣∣∣
ρ̇=ρ̇m

> 0. (39)

Note that the minimum value that 2Eh2 can take is −µ2(1 − 02) = −µ2, meaning that Gm is
bounded from below by −µ2 + µ2(1− e2MAX) = −µ2e2MAX.

Similar to the energy, one is interested in whether the variance of Gm may again be computed as

σ2Gm
=

[
∂Gm
∂X

]
R

[
∂Gm
∂X

]T
. (40)

The criterion for range hypotheses consistent with the angular momentum bounds may be modified
so that, if

Gm − nGmσGm > 0, (41)

then the range hypothesis is eliminated with some level of confidence specified by nGm . It is com-
putationally intractable to compute the partials analytically; in this paper, a numerical derivative is
taken via central difference. Figure 4 are histograms of the skewness and kurtosis of the distribution
ofGm over all observation geometries sampled, separated by the variable to which noise is added in
the tracklet. Gm remains nearly Gaussian when α or δ are varied but not for α̇ or δ̇; refer to Figure
2 for the results of the Jarque-Bera normality test. The linear approximation again becomes inap-
propriate for certain objects due to the observed angle-rate values being in the proximity of local
extrema of Gm. Variations in α̇ skew the Gm distribution positively, indicating that the distribution
is non-linearly deformed due to a local minimum. On the other hand, variations in δ̇ skew the Gm
distribution in both signs, indicating that it is deformed by both local minima and maxima: Figures
5 and 6 are two illustrative examples.

Errors in α̇ are unlikely to overly decrease Gm beyond the −nGmσGm bounds determined lin-
early, as can be deduced from Figure 6, limiting false negative association outcomes. Consequently,
the hypothesis rejection criterion is modified as in eq. (41) in this paper for the α, δ, and α̇ direc-
tions with nGm = 3. Then, the probability of missing an association due to measurement errors is at
most 0.26998%. The same cannot be said, however, of δ̇ when the distribution of Gm is negatively
skewed, so the following non-linear criterion is implemented. Recall that Gm is a quartic polyno-
mial in δ̇ given the hypothesized value of ρ and ρ̇ = ρ̇m. Probability is a conserved quantity in the
map between δ̇ and Gm as this map is one-to-one and continuously differentiable; e.g., if values of
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the attributable vector.
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from a Gaussian distribution for the same observation geometry. Skewness = 1.8387,
kurtosis = 8.0159, and p < 0.001 for the Jarque-Bera normality test.

δ̇ up to ±3σδ̇ are considered in the analysis, then 99.730% of outcomes in Gm are accounted for.
As such, a range hypothesis is eliminated with some specified level of confidence specified by nδ̇ if

min
[
Gm(δ̇ + nδ̇σδ), Gm(δ̇ − nδ̇σδ), Gm(δ̇E1), Gm(δ̇E2), Gm(δ̇E3)

]
> 0, (42)

where δ̇Ei (i = 1, 2, 3) are values of δ̇ that correspond to local extrema of Gm with respect to δ̇. In
this paper, nδ̇ = nGm = 3.

Angular Momentum Direction Bound

The angular momentum vector h may be written as a function of range-rate as

h = ρ̇h1 + H(ρ,X), (43)

where H consolidates all terms which are not direct functions of range-rate. Since H may be
computed solely based on the input and hypothesized variables, if one can approximate h ≈ H
with sufficient accuracy, then this approximation may be used to eliminate range hypotheses. For a
given tracklet X, the directional error ∆θh between h and H is maximum when h1 ⊥H such that

∆θh = arccos

[
h ·H
hH

]
= arccos

{( ρ̇h1
H

)2

+ 1

}(−1/2)
 . (44)

A MC simulation is conducted to ascertain if and when the above approximation is appropriate.
Here, 106 observations are simulated, each of objects randomly generated based on the distribution
of objects in the Joint Space Operations Center (JSpOC) public catalog. The semi-major axis (a) /
eccentricity (e) / inclination (i) of cataloged objects that meet the same bounds as the MC analysis
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Figure 7. (Left) Black x’s represent the distribution of Monte Carlo samples for which
the approximation h ≈ H deviates by more than 30◦ in direction in the semi-major
axis a / eccentricity e space. Color map is the log10 of the number of public JSpOC
catalogued objects that reside in each discretization bin. (Right) Distribution of the
same Monte Carlo samples in the topocentric range ρ / mean anomaly M space.

in the previous sections are separated into a 20 × 20 × 20 discretization grid. The number of
cataloged objects that reside in each bin defines a density function in this discretized space from
which MC samples are taken. A uniform distribution is assumed over each discretization bin as
well as over the remaining orbital elements. Measurement parameters such as the observer location
are the same as in the previous example. For 99.731% of MC samples, H was within 30 degrees of
h, or ∆θh ≤ 30◦ ; Figure 7 represents the distribution of samples for which the approximation was
worse (∆θh > 30◦ ) in several state spaces. We expect that h ≈H is poor when ρ̇ is large. Indeed,
all of the poorly approximated samples are highly eccentric and observed near their periapses.

We may compare the approximated angular momentum direction to the specified inclination
bounds [imin, imax] or to the angular momentum direction computed using a range / range hypothe-
sis pair (ρ1, ρ2) for tracklets X1 and X2

h ∝ [r1(ρ1,X1)× r2(ρ2,X2)] , (45)

where r1 and r2 are position vectors of the hypothesized objects. The latter is implemented for
this work based on the MC analysis such that, given a pair of tracklets, if the hypothesized range
for both is greater than 15,000 km AND if the approximated angular momentum vector differs
in direction from that computed based on the hypothesized position vectors by more than 30◦,
then that pair of range hypotheses is regarded as inconsistent with information from the actual
observation and is thus discarded. Assuming that the MC samples are an accurate representation of
the distribution of measurements made of MEO, GEO, and HEO objects, by fitting the MC results
to a binomial distribution, the 95% confidence interval for the probability of a missed association is
0% ∼ 0.00036889%.

RESULTS

The above formulation is tested upon simulated optical observations of objects in MEO, HEO,
and GEO. Observations are taken for a subset of 100 objects in the public JSpOC catalogue. These
objects appear at least 15◦ above the local horizon at epoch and move slower than 0.01◦ /sec instan-
taneously in both right ascension and declination at epoch. Figure 8 is a graphical representation of
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Figure 8. The orbits of all 100 objects generated in this simulation in an Earth cen-
tered inertial coordinate system. The red points indicate position at epoch. The green
sphere is the Earth.

the MC sample objects at epoch. Every 30 seconds, a virtual telescope centers its 1◦×1◦ field of
view (FOV) on a randomly chosen object. All objects that fall within this FOV are simultaneously
observed. The observatory is located at the inertial latitude of Haleakala and 0◦ inertial longitude at
epoch. Tracklet lengths are chosen to be either 2 seconds or 4 seconds, each with 5 images spaced
equally in time. A total of 836 tracklets are generated. For each of the possible

(
836
2

)
= 349,030

tracklet pair combinations, a 100×100 range / range hypothesis pair set is generated based on the
same orbital element bounds as all previous analyses

a ∈ [15000 km, 45000 km], e ∈ [0, 0.8], i ∈ [0, 70◦]. (46)

These range / range hypotheses are then evaluated as described in the previous sections. Addition-
ally, for range / range hypotheses that remain, a Lambert problem solution is differentially corrected
to their corresponding angle observations using a batch formulation of the UKF. Range / range hy-
potheses resulting in a±3-σ residual root mean square (RMS) or greater are rejected. Tracklet pairs
with zero range / range hypotheses remaining are deemed unassociated.

We first consider a tracklet length of 4 seconds. The plot on the left in Figure 9 is a color
map of the number of range / range hypotheses that remain for all possible tracklet pairs after
applying the gating method by Schumacher et al.; that is, the color of the cell located at (X,Y )
represents the log10 of the number of remaining hypotheses when the X-th tracklet and the Y -th
tracklet measured that night are paired. On the right is a histogram of the number of remaining
range / range hypotheses over all possible tracklet pairs. Similar plots are given for when angle-
rate information is added (Figure 10) and when the solutions are further differentially corrected
(Figure 11). A summary of results for both the 4 second and 2 second tracklet cases is given in
Table 1. The proposed method, simply based on bounds on constants of motion, is able to deem
over to 30% of the tracklet pair sets as unassociated regardless of tracklet length; a more than
900 fold improvement over the baseline based on only angular information. More importantly, no
associations are missed. In addition, from the batch UKF results, the BVP formulation of AR IOD
shows promise of being a feasible alternative to its IVP counterpart for extremely short tracklets
in terms of its low missed association rates. Efficient prefiltering as demonstrated in this paper is
critical for the BVP formulation to be attractive computationally.
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Figure 9. (Left) Number of remaining range / range hypotheses for all valid combina-
tions of tracklet pairs when only angular information is used for gating. Colors scaled
in log10. (Right) Histograms of the number of remaining range / range hypotheses for
all tracklet pairs processed. Tracklet length is 4 seconds with 5 images.
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Figure 10. (Left) Number of remaining range / range hypotheses for all valid com-
binations of tracklet pairs when both angle and angle-rate information is used for
gating. Colors scaled in log10. (Right) Histograms of the number of remaining range
/ range hypotheses for all tracklet pairs processed. Tracklet length is 4 seconds with 5
images.

Table 1. Summary of tracklet association results based on the method employed. “n sec” indicates
results for the proposed method for the specified tracklet length. Median number of remaining hy-
potheses shown only for tracklet pairs which are deemed associated. “Missed” association indicates a
false negative outcome.

Baseline 4 sec 2 sec 4 sec + UKF

% of tracklets deemed unassociated 0.036114% 33.9892% 33.7966% 73.5002%
Median # of remaining hypotheses 1982 595 601 112
# of missed association outcomes 0 0 0 0
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Figure 11. (Left) Number of remaining range / range hypotheses for all valid com-
binations of tracklet pairs when both angle and angle-rate information is used for
gating. Lambert’s problem is solved based on the remaining hypotheses and differen-
tially corrected with a batch formulation of the unscented Kalman filter. Colors scaled
in log10. (Right) Histograms of the number of remaining range / range hypotheses for
all tracklet pairs processed. Tracklet length is 4 seconds with 5 images.

CONCLUSION

In this paper, methods are proposed to improve the computational efficiency of a boundary value
problem formulation of initial orbit determination via admissible regions. Both angles and angles-
rate information from extremely short-arc optical tracks, potentially only a few seconds long, are
used to bound the constants of motion for some hypothesized object. These bounds act as criteria
to allow one to eliminate hypotheses that are physically infeasible before a more computationally
costly Lambert solver or differential corrector is applied. The linearity of maps between mea-
surement errors and errors in the constants of motion are studied so that missed associations are
minimized. Processing simulated observations of various medium Earth, high Earth, and geosyn-
chronous orbit objects, the proposed criteria by itself succeeded in eliminating 40% of all possible
track parings with 0 missed associations. Future work is to expand gating methodologies to initial
orbit determination algorithms that take three or more tracklets as input.
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