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ABSTRACT

Uncontrolled space objects in the geostationary orbit do-
main are hazardous threats for active satellites. Cata-
logs need to be build up, in order to protect this pre-
cious domain. The Swiss ZimSMART telescope, located
in Zimmerwald, regularly scans the geostationary ring in
order to provide a homogenous coverage. This survey-
ing technique typically yields short measurement arcs,
called tracklets. Each tracklet provides information about
the line-of-sight and the rates of change but typically not
about the full state of the observed object. Computation-
ally intensive multi-hypothesis filter methods have been
developed to associate tracklets with each other. An ef-
fective implementation to this approach is presented that
uses an optimization algorithm to reduce the number of
initial hypotheses. The method is tested with a set of real
measurements of the aforementioned telescope.

1. INTRODUCTION

Debris populating the geostationary orbit poses a threat
to active satellites. The unique characteristics of this orbit
makes it essential for communication, broadcasting, nav-
igation and weather surveillance. It is therefore of great
importance to maintain the usability by building up a cat-
alog with ephemeris data.

The Astronomical Institute of the University of Bern
(AIUB) developed the robotic telescope ZimSMART that
monitors the geostationary orbit domain from ground.
Single objects are not tracked individually but instead the
complete region is surveyed in order to built up a cata-
logue [4]. This survey yields short sequences of angle
measurements, called tracklets, that cover a small frac-
tion of the overall orbit. Due to the short coverage, these
tracklets lack of complete state information.

They are therefore associated to already cataloged objects
or, if no known matching object is found, tested pairwise
with other observations [2]. This work focuses on the
latter problem, where it is tested whether two tracklets
belong to a common object or not. If they belong to each

other, an initial orbit state must be determined for a can-
didate catalog object.

Milani et al. [8] and Tommei et al. [11] suggested to
bound all possible orbit solutions for a tracklet to an
admissible region by physical constraints, e.g. requir-
ing that a candidate object can only be on a stable orbit
around the Earth. The admissible region concept was uti-
lized by several researchers in their approaches to link ob-
servation arcs. Fujimoto et al. [3] find the common orbit
solution of two tracklets by computing the overlap of both
possible solution spaces. They, therefore, fill each admis-
sible region with state hypotheses and propagate them to
a common epoch for comparison.

Another approach, proposed by DeMars et al. [1], is to
sample only the region of one tracklet with a bank of hy-
potheses and propagate each one to the epoch of another
tracklet. Each hypothesis is then tested with the new ob-
servation. If the test fails, i.e. the hypothesis does not
match the other observation, it is removed. However, if
a hypothesis survives the gating process, a candidate ob-
ject is created whose orbit can be affirmed and refined
with further observations.

Both methods require a complete sampling of the admis-
sible region with hypotheses to guarantee that each pos-
sible orbit solution is tested. As each hypothesis, i.e. a
state and its associated uncertainty, needs to be propa-
gated, the sampling density effectively defines the com-
putation time. Therefore, an efficient iso-energy-grid has
been proposed in [10] to decrease the computational ef-
fort of the hypothesis testing. Additionally an optimiza-
tion algorithm is used to search for the best fitting hy-
pothesis instead of testing all possible ones.

This paper will shortly summarize the research on the
iso-energy-grid and hypothesis search and then assess its
performance. The approach is tested using measurements
from the ZimSMART robotic telescope. The provided set
contains measurements of two following nights, which
will be used to evaluate the association performance.
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2. BACKGROUND THEORY

This section summarizes the methodology that is used
to perform a track association. Firstly, optical measure-
ments and their derived quantities are discussed. Then,
the new approach of using an iso-energy grid and a search
algorithm will be outlined.

2.1. Observations

When operating the telescope in a survey-only mode, it
captures short sequences of astrometric observations of
an object, i.e. right ascension α and declination δ values
in a topocentric reference frame

αi, δi, ti for i = 1, . . . , n , where n ≥ 3.

In view of the short duration, the information in this
tracklet is not sufficient to determine the full set of or-
bital elements of the object. Therefore the information
is merged into a so-called attributable vector, which con-
tains the line-of-sight direction and its derivative

a = (α, α̇, δ, δ̇). (1)

A quadratic or linear polynomial, which models the
change in angles over time, is fitted to the observations
(cf. [7]). Similarly to the tracklet, the 4-dimensional at-
tributable vector does not itself provide enough informa-
tion to determine a full set of six orbital elements. How-
ever, when combining the attributable with a range and
range-rate hypothesis (ρ, ρ̇), the state vector

y = y(ρ, ρ̇, α, α̇, δ, δ̇) (2)

or, equivalently, the orbital elements become uniquely
defined. The space of orbit solutions for one measure-
ment is then bounded by restricting the possible range
and range-rate combinations with the admissible region
concept.

2.2. Admissible Region

The admissible region defines the space of possible range
and range-rate combination and can be limited using
physical constraints [8, 11]. These constraints can be set
up by requiring that candidate objects are on stable or-
bits around the Earth and should not deorbit withing the
next revolutions. Therefore, the orbital energy of the hy-
pothesis state must be non negative and the perigee height
must be above a certain limit. After transforming the state
from the topocentric coordinate system into the inertial
one, the energy can be obtained. The specific energy of
an object at the geocentric position r with the velocity v
is defined as:

E =
‖v‖2

2
+

µ

‖r‖
. (3)

An illustrative example admissible region boundary is
shown in Figure 1, where the energy was required to be
non-negative and a minimum perigee height was used. It
also shows lines of equal energy or semi-major axis re-
spectively.

ρ

ρ̇

Figure 1. Illustration of the Admissible Region bound-
ary. The energy of the orbit solutions stays constant on
the dashed lines.

The extent of the region can be furthermore restricted by
allowing only solutions in a specified orbital region, e.g.
when only the near-geostationary region is of interest.
This can be achieved by restricting the orbital energy by
certain bounds. Constraining the semi-major axis from
both sides will lead to a banana shaped region as illus-
trated by a pair of dashed lines in the shown figure.

2.3. Hypothesis testing

Without any prior knowledge, all possible state hypothe-
ses (ρ0, ρ̇0) of one attributable a0 at the epoch t0 are
equally likely. In order to identify whether a second ob-
servation a1 at t1 belongs to the same object as the ini-
tial one, the possible range and range-rate combinations
must be tested. Therefore, the probability for a hypothe-
sis to be a common solution of both attributables must be
computed. As a measure for this probability the so-called
Mahalanobis distance is evaluated [1]. It is effectively the
distance between a hypothetical measurement â1 at the
epoch t1 and the actual measurement a1 weighted with
the uncertainties Ĉ1 and C1. The quantities â1 and Ĉ1

are the propagated initial attributable a0 and covariance
matrix C0 using a measurement and propagation model
as well as the orbit hypothesis (cf. [1]). The uncertainties
of the attributables are assumed to be normally distributed
and are thus described by the respective covariance ma-
trices. The corresponding loss function is given by

L (ρ0, ρ̇0) = ∆a1
>(Ĉ1(ρ0, ρ̇0) + C1)−1∆a1, (4)

where
∆a1 = a1 − â1(ρ0, ρ̇0). (5)

In order to obtain the best fitting range and range-rate hy-
pothesis, the above shown loss function must be mini-
mized.



The distance itself is a random variable and distributed
according to the χ2 distribution. It can therefore be gated
using a predefined significance level (cf. [1]).

Figure 2 shows the loss function for an example case,
where the same object is re-observed after two nights. If
the attributables do not match, i.e. if two different ob-
jects were observed, the loss function looks quite similar.
However, the global minimum of the loss function will be
larger than in the case of one observed object.
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Figure 2. log10 of the loss function for the admissible
region bounded by the semi-major axis from both sides
(30000km - 45000km). Two tracklets of the same geosta-
tionary communication satellite from the AIUB database
were chosen. The time interval between the initial track-
let and the second one is 1.9 days

The topography of the loss function is analyzed to deter-
mine a strategy for minimization. Several local minima
can be observed that might contain the common orbit so-
lution of both attributable vectors. The number of the
feasible areas increases with the number of possible orbit
revolutions between the two measurement epochs. The
latter number can be derived from the time interval be-
tween the epochs and the semi-major axis limits. That
also implies, that the region can be potentially sectioned
using the orbital period or semi-major axis in order to
obtain subregions with, ideally, only one feasible solu-
tion. Due to the uncertainties of the measurements, many
of these feasible areas can actually contain probable am-
biguous orbit solutions. The larger the time interval be-
tween the epochs is, the more of these ambiguous solu-
tions can be found. It can be concluded, that the admis-
sible region must be sampled denser for longer time in-
tervals than in case of a re-observation within the same
night. The computational burden increases with the num-
ber of loss function calls, as each call includes propagat-
ing the hypothesis state and its uncertainty. To avoid a
complete admissible region sampling and therefore large
computational efforts, a search method is presented in
section 2.5 that reduces the number of function calls.

2.4. Iso-Energy-Grid

The admissible region is traditionally discretized on a
rectangular grid or using a Delaunay triangulation [11].
As these grids do not consider the topography of the loss

function, they require dense sampling to account for ev-
ery possible solution. To cope with this problem, an al-
ternative grid is proposed. Figure 3 illustrates the coordi-
nate transformation from one grid to the other. Instead of

|ρ̂|

√
∆

ρv(a)

ρ̇v

a

ρ

ρ̇

Figure 3. Illustration of the iso-energy coordinate trans-
formation

using the range and range-rate, the semi-major axis and
relative rate ρ̂ are used. The latter will be explained in
the following. The energy Equation (3) is quadratic in
the range-rate variable. If semi-major axis and range are
given, the equation can be solved for its roots in order
to determine range-rate solutions. If the discriminant ∆
of the quadratic function is positive, two solutions can be
found:

ρ̇1,2 = ρ̇v ±
√

∆, (6)

where ρ̇v is the vertex range rate and constant for all en-
ergy levels. The range value ρv is the intercept of the
iso-energy line with the vertex axis, i.e. the uppermost
point of an iso-energy line. The absolute value of the rel-
ative range is then the difference between the range and
ρv . The sign of the relative range is used to define which
of the two solutions in Equation 6 is wanted.

Using the mentioned values, a coordinate transformation
from the range and range-rate space (ρ, ρ̇) to a semi-
major axis and relative range space (a, ρ̂) can be math-
ematically expressed by:

L̂ (a, ρ̂) = L (ρ(a, ρ̂), ρ̇(a, ρ̂)) , (7)

where
ρ(a, ρ̂) = ρv(a)− |ρ̂| (8)

and

ρ̇(a, ρ̂) =


ρ̇v −

√
∆(a, ρ), if ρ̂ < 0

ρ̇v, if ρ̂ = 0

ρ̇v +
√

∆(a, ρ), if ρ̂ > 0

(9)

Figure 4 shows the loss function for the same example
case as in the figure with the traditional admissible region
coordinates.

The iso-lines can alternatively be sampled with an
equidistant grid, i.e. the secant length√

∆ρ2 + ∆ρ̇2

between neighboring hypothesis points stays constant. A
method to determine this equidistant grid is described in
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Figure 4. Loss function using the same tracklets and
bounds as in Figure 2 but on the iso-energy grid.

[10]. The advantage of using a coordinate transformation
instead of discretized grid is, that also line minimization
methods can be used, as e.g. given in [9].

2.5. Minimum search

The loss function can be seen as a topography, where the
global minimum represents the best hypothesis. Numer-
ical methods can be exploited in order to find it, e.g. the
downhill simplex search or evolutionary multi-modal op-
timization methods (see [9]). Here, a pattern search is
implemented due to its simplicity and robustness. [6] de-
scribes the formal concept of a pattern search. The loss
function L(ρ, ρ̇) in Equation 4 shall be minimized. Given
an initial value inside the admissible region, its surround-
ing area is tested with exploration moves in a specific dis-
tance. The move, that returns the best improvement, i.e.
the smallest loss function value, is used as the new initial
search point. If none of the surrounding points is bet-
ter than the middle one, the search distance, or step size
respectively, is reduced. The search is an iterative pro-
cess, which stops when a predefined convergence crite-
rion is reached, e.g. the loss function or step size becomes
smaller than the accuracy requirement. The region should
be explored in the most promising directions, i.e. direc-
tions that can most probably lead to improvements. The
topography of the loss function contains valleys and hills,
that are approximately distributed along the different en-
ergy levels. Therefore, testing a hypothesis with a differ-
ent energy should lead to a change, positive or negative,
in the loss function. Additionally the algorithm can walk
across the iso-energy lines by altering the range value.
As described in section 2.3, the loss function can con-
tain multiple feasible orbit solutions. Consequently, the
region is beforehand sectioned into smaller subregions,
where each subregion optimally contains only one mini-
mum. However, it is not guaranteed that the feasible val-
leys stay inside a section. That is why each section is in-
dividually sampled with an sufficient amount of equally
distributed start points. If a search does not reach a fea-
sible area within a certain number of steps, it is dropped.
Surviving search results, i.e. the local minimum solu-
tions, are afterward tested with a threshold. If no result
passes this gate, it can be concluded that the measure-
ments do not share a common space object. The section-
ing process is described in detail in [10].

3. RESULTS

As already written in the introduction, the AIUB pro-
vided a set of measurements of the ZimSMART (Zim-
merwald SMall Aperture Robotic Telescope) telescope.
The telescope is located in Zimmerwald, close to Bern in
Switzerland and is used to build up a catalog of objects in
the geostationary orbital region.

Figure 5. Set-up of the ZimSMART telescope. Credits to
Astronomical Institute University of Bern

The accuracy of the measurements of the telescope is
about one arcsecond [5]. The error can be a good as-
sumption for the individual angles but can lead to large
errors in the derived rates. It also contains systematic
terms that are similar for all observation in one tracklet,
e.g. caused by errors in the star catalog or wrong cali-
bration. Consequently, the relative error between the in-
dividual measurements can be much smaller, which leads
to better error estimates for the angle rates. The time du-
ration of one tracklet is around two minutes, with approx-
imately five individual measurements per tracklet. While
computing the attributable vectors, i.e fitting the angular
motion model to all 180 tracklets, also the residuals for
each linear fit can be determined. The resulting root mean
square (RMS) values of the residuals for all tracklets are
shown in Figure 6 and 7.
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Figure 6. RMS values of the right ascension linear fit
residuals within one tracklet for all 180 observed track-
lets.

Five independent measurements in one tracklet are not
sufficient to provide a good estimate of the actual rela-
tive error but can be used conservatively in the associa-
tion process. It can be observed, that the spread of RMS
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Figure 7. RMS values of the declination linear fit residu-
als within one tracklet for all 180 observed tracklets.

values in the figures is smaller than the beforementioned
arcsecond. For the determination of angle rates, the rel-
ative error is therefore conservatively assumed to be 0.4
arcseconds for both angles.

The method is evaluated using a set of 180 tracklets taken
in two consecutive nights. The tracklets were associated
to known objects by the AIUB. 40 objects were observed
two times and the remaining 100 tracklets belong to indi-
viual objects. In total approximately 16000 tracklet com-
binations must be tested, where 40 combination should
return a positive match and the rest should be identified
as distinct objects by the algorithm.

The evaluation is performed on a Intel Core i7-3720 CPU
with 2.60 GHz clock rate. Each hypotheses search takes
around 0.7 seconds, which adds up to 3.1 hours for the
complete data sample. The run-time varies from one
tracklet combination to the other depending on the to-
pography of each loss function. The smaller the time in-
terval between the tracklets, the less initial search points
are required to cover the complete region. The bounding
semi-major axis values of the admissible region can fur-
thermore be used to reduce the computation time. For the
statistics shown here, the semi-major axis was required to
be between 38000 and 45000 km.

In [10] it is presented that the here used pattern search
requires up to three orders less function evaluations than
the traditional complete sampling.

The tracklet association performance is tested by evalu-
ating the number of erroneous decisions for observations
of non-common objects and the number of erroneous de-
cisions for observations of common objects. The first can
also be described as the false positive associations and
the latter are the false negative ones. The statistics of this
performance test is shown in Figure 8, where the percent-
age of false negatives and false positives are shown w.r.t.
to a threshold value.

One can observe that most tracklets that actually belong
to each other were successfully associated, while keeping
the rate of erroneous associations of distinct objects low.
One remaining tracklet pair could not be paired correctly.
The reason could be an unknown maneuver or a bad mea-
surement. As written in section 2.3, the association gate
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Figure 8. False positive and false negative ration depen-
dent on the maximum allowed distance between the prop-
agated initial measurement and the second one.

can consider that the return of the loss function should be
distributed according to the χ2 distribution.
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Figure 9. Distribution of distance values for tracklets that
belong to common objects.

Figure 9 shows the minimum loss function values, i.e.
distances, for all tracklet pairs of common objects and the
corresponding χ2(4) distribution for 4 degrees of free-
dom. While the tail of the distribution appears well rep-
resented, the distribution peak does not meet the expecta-
tions. In so, the presented statistics suffer from the small
number of observations belonging from common objects
(40). The above mismatch indicates inappropriate as-
sumptions on the employed measurement statistics and
a careful reassessment of observation errors is deemed
necessary as part of future research.

4. SUMMARY AND CONCLUSION

An extension to the multi-hypothesis testing approach to
identify common objects in a database of tracklets was
presented. The region of feasible orbit candidates is
searched for the best fitting one. The search moves on
an efficient iso-energy grid that incorporates the topog-
raphy of the loss function. In addition to previous re-
search, which mainly focused on the run-time, this work
focused on the actual association performance. There-
fore, a set of measurements provided by AIUB was pro-
cessed. The common objects in the given data could
be successfully identified, while keeping the rate of er-
roneously detected objects low. This work furthermore



questioned how tracklet uncertainties should be retrieved.
A simple error model, where each tracklet has a constant
error term in addition to the individual measurement er-
rors, was shown to be more accurate. Nevertheless, the
error modeling must be studied more in detail in future
work. The here used database could only evaluate the er-
rors for one known object. Additionally, strategies need
to be invented on how to set the gating thresholds. Large
thresholds can help to link observations of the same ob-
ject but also lead to large false positive rates. Unneces-
sary non-realistic combinations of tracklets lead to a large
database of possible catalog candidates, which ultimately
leads to a large computational burden. This paper also
assessed the run-time performance when working with
real measurements. If only 200 tracklets are tested with
each other, the overall computation time stays in feasible
bounds. However, the situation changes if the number
of uncorrelated tracklets increases and computationally
more effective methods would be required. Finally, fur-
ther research must assess the quality of the obtained can-
didate orbits. As the here presented search is capable of
finding the minimum of the loss function with predefined
accuracy requirements, it is a promising approach to also
get better initial orbit hypotheses.
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