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Since 2004, the Astronomical Institute of the University of Bern (AIUB) has regularly observed
light curves of fast-moving Earth-orbiting objects with the 1-meter telescope ZIMLAT, which is
located near Bern, Switzerland. A light curve represents the brightness variations of an object over
time. These variations result from the superposition of shape, attitude, motion, and material of
an object under a specific viewing and illumination geometry. Whereas actively stabilized objects
show relatively flat light curves due to stable attitude, light curves of space debris can show large
variations even within very short time intervals. The time resolution of the light curves acquired
with ZIMLAT is of the order of a few seconds, but even this high resolution does not prevent aliasing
effects in some cases. Synthetic light curves have been generated. The simulation allows defining
and independently changing object, illumination, and observation geometry parameters. This paper
analyzes observed and simulated light curves with the aim to assess the feasibility of determining
an object’s characteristics, provided that the observation parameters (epoch, orbit/distance and
geometry) are known.

I. Introduction

Since the first satellite, Sputnik, was launched,
more and more resident space objects (RSOs)
are populating the space around the Earth.
The USSTRATCOM catalog counts around
16 000 objects. Estimates by other sources,
such as the Astronomical Institute of the
University of Bern, assume more than 300 000
objects larger than one centimeter orbiting the
Earth. As the numbers indicate, only a small
portion of the objects are actually known.
With the increasing number of unknown resi-
dent space objects, it becomes more and more
challenging to distinguish objects from each
other and uniquely identify them. The images
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of objects at an altitude of 36000 km in the
geostationary ring are non-resolved in ground-
based observations. One way to gain more
than positional information is through light
curve measurements. Light curves measure the
light reflected from an object over time in a
specific viewing direction. The reflected light
is a super-position of the shape and attitude
motion of an object under a specific viewing
geometry. The Astronomical Institute of the
University of Bern measures light curves of
RSOs – active spacecraft and space debris
– on a regular basis since 2004. This paper
addresses the issue of analyzing the measured
light curves of space debris. For a deeper
insight, artificial light curves of simple shapes
are simulated. In simulated light curves, all
parameters, such as shape, attitude, lighting,
and viewing conditions are known and can
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be controlled. They serve as test cases and
a learning environment for real light curves.
Possible analogies between simulated and
measured light curves are investigated.

This paper is giving a very brief introduc-
tion to the theory of light curve measurements.
In the following section, the mechanism of
simulating light curves and some examples are
shown. This section is followed by examples
of measured light curves of an active satellite
and space debris. The light curves are Fourier
analyzed and a pattern recognition method is
introduced. The conclusions summarize the
results.

II. Theory of Light Curve Observations

In light curve measurements, the brightness of a
non-resolved object is measured over time, ob-
served in a specific viewing direction. The light
received by the observer depends on the geom-
etry under which the object is observed, the
materials the object is composed of, the orien-
tation of all illuminated facets, the illumination,
and the observation direction. An example of
a possible viewing geometry is shown in Fig. 1.
A local coordinate system of the RSO is de-
fined, along its main axis of inertia. The classi-
cal phase angle, Earth-object-Sun, is split into
two angles, in the xy-plane and in the xz-plane.

The radiant intensity reaching the Earth is
therefore:

I =
IsunAeff

4πR2
earth−obj

(1)

with:

Aeff = Σ
Nfacets

j=1
Ajaj(~nj

~i)+(~nj~o)+ (2)

Isun is the Sun’s radiation intensity at the ob-
ject, Rearth−obj the distance between observer
and object, and Aeff the effective surface. The
effective surface is a sum over all illuminated
(~nj

~ij)+ and visible (~nj~o)+ facets with their
individual albedos aj , whereas ~n is the normal
vector on each facet, ~i is the light vector
object-Sun, and ~o the vector object-observer.
The +-subscript indicates that only positive

Figure 1: Lighting and viewing conditions in observ-
ing an Earth orbiting RSO.

values are taken into account.

III. Simulated Light Curves

To analyze light curves, two independent
approaches have been taken. First, light
curves of simple shapes have been simulated.
The shapes were rendered and animated with
OpenSceneGraph under different lighting and
viewing geometries. The light source was
calibrated to represent a realistic lighting from
the Sun. The illuminated and visible facets
were integrated at discrete time steps. With
calibration and assumption of the size and
distance of the simulated objects, magnitudes
can be estimated. A cube, a cylinder, and
the shape of a thin multi-layer insulation
(MLI) structure have been simulated. For all
simulations shown in this paper, all shapes
are assumed to be pure Lambertian reflectors.
Spectral reflection has been simulated, too.
Pure spectral reflectors produce specific glint
patterns with times of invisibility in between.
The cube was simulated to have a sides of two
meters, the cylinder was simulated to have
a height of 6.2 meters and a diameter of 3.7
meters, which represents the size of an average
Russian upper stage, and the MLI structure
was assumed to have a size of roughly one
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square meter. All objects are assumed to be
in the geostationary ring with zero inclination.
Without loss of generality the observer was
assumed to be in the same plane as the object.

For the cylinder, four different setups are
displayed. First, a single rotation around the
x-axis in the coordinate system of the cylinder,
with a period of 41 minutes under a phase
angle of zero degrees, is simulated. Second, two
rotations which superimpose on each other,
one around the x-axis with a period of 49
minutes and one around the y-axis with a
period of 88 minutes, is examined. This latter
rotation was simulated to be observed under
a phase angle of 0 degrees, of 90 degrees in
the xy-plane, and under 90 degrees in xy-plane
and 45 degrees in the xz-plane. The time
scale used is arbitrary – it was assumed that
every time step rendered corresponds to a
sampling of one second. This choice makes the
simulation independent of the specific platform
it is run on. Fig. 2 illustrates the cylinder in
the different lighting/viewing conditions and
Fig. 3 displays the different synthetic light
curves gained in the different setups. The
latter setup of an illumination from a source
90 degrees in plane and 45 degrees out of plane
seen from the observer, and the superimposed
rotation of 49 resp. 88 minutes around the x-
and y-axis was also simulated for the cube and
the MLI structure, both as pure Lambertian
reflectors again. In Fig. 4 and Fig. 5, the shapes
and setup, as well as the light curves, are shown.

Fig. 3 shows that the simple rotation around
the x-axis only and the rotation around two
axis (x- and y-axis) do not produce completely
different patterns – mostly the time scale seems
to differ – as long as the phase angle is zero
in the xy-, as well as in the xz-plane. The
very same rotation produces different patterns,
when the phase angles are changed, due to the
fact that not all facets that are illuminated are
visible to the observer.

(a) (b)

(c) (d)

Figure 2: Simulated cylinder under different lighting
and rotation conditions: (a) rotation around x-axis,
phase angle 0◦. Rotation around x- and y-axis with
frequencies 5:3, with phase angle (b) 0◦, (c) 90◦ in
xy-plane, and (d) 90◦ in xy-plane and 45◦ in xz-
plane
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Figure 3: Simulated light curves of a cylinder un-
der different lighting and rotation conditions: (a)
rotation around x-axis (41min period), phase angle
0◦. Rotation around x- and y-axis (period 49 resp.
88min), with phase angle (b) 0◦, (c) 90◦ in xy-plane,
and (d) 90◦ in xy-plane and 45◦ in xz-plane
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Figure 4: Simulation of a cube with rotation around
x- and y-axis (period 49 resp. 88min), with phase
angle 90◦ in xy-plane and 45◦ in xz-plane: (a) image
of the simulation, and (b) simulated light curve.
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Figure 5: Simulation of an MLI structure with rota-
tion around x- and y-axis (period 49 resp. 88min),
with phase angle 90◦ in xy-plane and 45◦ in xz-
plane: (a) image of the simulation and (b) simulated
light curve.

In a comparison of Fig. 3 with Fig. 4 and
Fig. 5, the simulations of the cube and the
MLI structure show that the light curves also
differ for the very same setup if the viewing
geometry and lighting conditions for different
shapes differ significantly. If the object consist
of one or only a few flat surfaces, and it is in a
tulbing motion, it is not visible for the observer
during the observation span several times.

IV. Observed Light Curves

With the 1-meter ZIMmerwald Laser and
Astrometric Telescope (ZIMLAT), light curves
of space debris are observed on a regular basis.
Most of the light curves are collected from
space debris objects that are not in the official

USSTRATCOM catalog, but are maintained in
the internal AIUB catalog. A small subset of
three objects from the USSTRATCOM catalog
was chosen, to be displayed here. If the objects
are known, i.e, are in the USSTRATCOM
catalog, the objects are already identified, thus
the shape of the objects is known. Characteri-
zation of known objects is one simplification on
the way to a full characterization of completely
unknown objects. The sampling rate of light
curves taken with ZIMLAT is of the order of
three seconds.

First, light curves of the spin controlled
MSG-1 satellite with the COSPAR Number
2002-040B were taken. MSG-1 is a cylindrically
shaped satellite, which is still active and has a
spin-stabilized attitude control.

As a second case, the Blok DM-2 upper
stage 1991-010F was observed. The upper
stage is shaped more or less cylindrically; it
was never in a controlled attitude state.

Third, the dead Gorizont 33 satellite 1990-102A
was observed and light curves were taken. The
Gorizont satellite consists very basically of a
cylindrically shaped body with two larger and
two smaller solar panels. It is space debris and
no longer attitude controlled.

All objects are in a geostationary orbit,
with negligible eccentricities. MSG-1 is in
a controlled orbit around zero degrees incli-
nation, Blok DM-2 is in an orbit with an
inclination of 11.9 degrees, and the Gorizont
33 satellite at 12.5 degrees inclination.

Two light curves of MSG-1 are displayed,
taken on Dec 4th under a phase angle of 40.2◦

and on Dec 9th under 93◦; the light curves
are displayed in Fig. 6. For Blok DM-2, four
light curves are analyzed, observed on May
12th, 13th, 19th, and 26th, under phase angles
of 21.1◦, 9.5◦, 14.9◦ and 31.4◦, respectively,
displayed in Fig. 7. Three light curves of
Gorizont 33 are examined, taken on July 21st
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Figure 6: Light curves of the MSG-1 satellite 2002-
040B (a) Dec 4th, phase angle 42.2◦ and (b) Dec
9th, phase angle 93◦.
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Figure 7: Light curves of the Blok DM-2 satellite
1991-010F (a) May 12th, phase angle 21.1◦, (b) May
13th, phase angle 9.5◦, (c) May 19th, phase angle
14.9◦, and (d) May 26th, phase angle 31.4◦.

at a phase angle of 11.4◦, July 26th and July
28th, under an angle of 11.2◦ resp. 15.1◦; they
are displayed in Fig. 8.

All magnitudes that are displayed are ap-
parent magnitudes, calibrated against the
stellar background. The measurements were
taken over time intervals up to 30 minutes.

In Fig. 6, the two light curves of the spin-
stabilized satellite MSG-1 satellite are very
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Figure 8: Light curves of the Gorizont 33 satellite
1990-102A (a) July 21st, phase angle 11.4◦, (b) July
26th, phase angle 11.2◦, and (c) July 28th, phase
angle 15.1◦.

flat and only show small fluctuations within
the limits of about 0.1 apparent magnitudes
over the observation interval. This is expected,
due to the controlled attitude state and the
cylindrical shape. The only rotation that is
performed is around the symmetry axis of
the cylinder, which is expected to be vertical
to the observation direction. That small
fluctuations are observed can have two possible
explanations. For one, the surface of the
MSG-1 cylinder is not completely uniform, it
consists of several flat surfaces of the panels
and other smaller substructures. Furthermore,
of course, fluctuations in the atmosphere is a
major uncertainty factor, too.

In Fig. 7, the light curves of Blok DM-2
are displayed. They show clear structures and
variations of the order of half a magnitude
within few seconds. The light curves vary from
one observation to the next. The very fast
variations suggest that aliasing effects may be
present.
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Fig. 8 shows three light curves of the Gor-
izont satellite. For this large satellite, there
seems to be a pattern present in each of
the observations, suspected to represent the
panel-body structure. The light curves are
not identical, even when observed under very
similar phase angles as in Fig. 8 (a) and (b),
but resemble each other strongly.

V. Fourier Analysis

To gain more insight, the light curves were
Fourier analyzed. In the first step, the simu-
lated light curves were analyzed. The results
for the cylinder are shown in Fig. 9. Fig. 9(a)
shows the Fourier spectrum for the simple
x-axis rotation. There, one main period shows
up prominently. But its value is of about
eight minutes and additionally several smaller
periods show up. Eight minutes is much
smaller than the true period that was used
to generate the synthetic light curve. One
reason is, that compared to the period only a
short observation interval of 40 minutes was
assumed, which may very well be a realistic
scenario, but it cannot be expected that the
Fourier decomposition actually produces the
correct period under these circumstances. As a
second test, a longer observation interval of 200
minutes was assumed of the very same setup.
A Fourier analysis was performed. The light
curve itself and the Fourier decomposition is
shown in Fig. 10. The Fourier decomposition
has changed significantly. There is one main
period at 20 minutes and one at around 10
minutes. The period of 20 minutes is actually
close to half of the actual rotation period,
which is due to the fact that the cylinder is
mirror symmetric to the xy-plane.

Fig. 9(a) to (c) show the Fourier spectrum
for the light curves of the superimposed rota-
tion around the x- and the y- axis. All light
curves show two main periods of around six
and eleven minutes. The cases observed under
a phase angle different from zero also show
several other distinct periods but with smaller

amplitudes especially in the cases. The are
indeed two main rotations – the introduced
rotation rates were 88 and 49 minutes – but
the assumed observation interval is again far
too short to catch these periods in the Fourier
analysis. What is preserved nevertheless is the
relation of about 1.8 between the periods.

Fig. 11 shows the Fourier decomposition
for the simulated cube and the MLI structure
for the same rotation as the latter case of the
cylinder. The cube (Fig. 11(a)) shows two main
periods, one at around 6 minutes and another
one at around 12 minutes, consisting of two
not clearly separated periods. The result is,
therefore, comparable to the case of the same
setup for a cylinder. The situation is different
for the MLI structure, (Fig. 11(b)). Here, the
Fourier analysis shows one main dominant
period at 23 minutes, and smaller ones at
about 12 and 16 minutes. Obviously, with the
large periods in which the object is not visible
for the observer due to the flat shape, the
Fourier decomposition of the different rotations
is complicated.

In the next step, the real light curves
were Fourier analyzed. Fig. 12, the Fourier
analysis of the controlled MSG-1 satellite,
shows no large amplitudes for any periods.
This is in accordance with what one expects
for a spin-stabilized satellite. Fig. 13 shows
the Fourier spectrum for the Blok DM-2 light
curves displayed in Fig. 7. For all four light
curves, one very small period of the order of 4
to 8 seconds occurs with a large amplitude, as
well as one or two not clearly separated periods
around 1.3 to 1.8 minutes. This strongly
indicates that the observed light curves are
subject to aliasing effects, due to a 3-second
sampling rate. The main periods seem to be
more or less stable over the different phase
angle measurements and times. But Fig. 7(b)
especially seems to indicate that there may be
at least one large period superimposed, which
cannot be detected with the current length
of the observation interval in a Fourier analysis.
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Figure 9: Fourier spectrum of simulated light curves
of a cylinder under different lighting and rotation
conditions: (a) rotation around x-axis (41-min pe-
riod), phase angle 0◦. Rotation around x- and y-axis
(period 49 resp. 88min), with phase angle (b) 0◦, (c)
90◦ in xy-plane, and (d) 90◦ in xy-plane and 45◦ in
xz-plane.
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Figure 10: (a) Simulated light curves over a long
observation interval for a cylinder rotating with a
period of 41 minutes around x-axis, phase angle 0◦;
(b) Fourier spectrum of this light curve.
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Figure 11: Fourier spectrum of the simulated light
curves of (a) a cube and (b) MLI structure with ro-
tation around x- and y-axis (period 49 resp. 88min),
with phase angle 90◦ in xy-plane and 45◦ in xz-
plane.
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Figure 12: Fourier spectrum of light curves of the
MSG-1 satellite 2002-040B (a) Dec 4th, phase angle
42.2◦ and (b) Dec 9th, phase angle 93◦.
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Figure 13: Fourier spectrum of light curves of the
Blok DM-2 satellite 1991-010F (a) May 12th, phase
angle 21.1◦, (b) May 13th, phase angle 9.5◦, (c) May
19th, phase angle 14.9◦, and (d) May 26th, phase
angle 31.4◦.
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Figure 14: Fourier spectrum of light curves of the
Gorizont 33 satellite 1990-102A (a) July 21st, phase
angle 11.4◦, (b) July 26th, phase angle 11.2◦, and
(c) July 28th, phase angle 15.1◦.

The Fourier analysis of the three light
curves of Gorizont 33 (Fig. 8) are displayed in
Fig. 14. They show three main periods around
25 and 35 seconds and one around one minute.
In Fig. 14(c) the second period is split into two
periods, which are not completely separated.

Although the observation intervals are short,
this indicates very rapid rotations for the
debris objects. The difference between side-
real and synodal rotation is not relevant for
geostationary objects observed over short time
intervals of the order of less then 1/24 of their
revolution period. The periods seem to be
more or less constant for observations under
different phase angles.

VI. Pattern Analysis

In a next step, a pattern recognition algorithm
was developed. The algorithm tries to detect
pattern in light curves measurements. A
pattern is a set of data points which is within
small deviations re-detected within the same
light curve several times.

The algorithm was tested with the sim-
ulated light curve of a cylinder rotation around
the x-axis observed under phase angle zero,
which is displayed in Fig. 3(a). The results
are shown in Fig. 15: Fig. 15(a) shows the
size of the patterns found as a function of
the number of times the pattern could be
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Figure 15: (a) Size of the pattern as a function of the
number of detected occurrences (b) pattern found in
light curve of Fig. 3(a).
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Figure 16: Light curves with highlighted pattern of
the Blok DM-2 satellite 1991-010F (a) May 19th and
(b) May 26th. In (c), the size of the pattern as a
function of the number of detected occurrences in
the light curve of May 19th. (d) Patterns found in
all four light curves of Fig. 7 in one plot.

found again within the same light curves up
to small deviations of 20 percent. Fig. 15(b)
shows the pattern that was found. The pattern
is probably slightly shifted compared to one
chosen by eyesight, but the algorithm was
judged to be working. The selected pattern
was programmed to be chosen as large as
possible, a size of 600 data points still occurs
three times, which seemed to be a reasonable
value with regard to number of data points
(about 2,400). At this step, the algorithm still
relies on some experience values.

In the second step, the real light curves
were analyzed. In all cases, patterns could be
found. Fig. 16(a) and (b) show two of the light
curves of Blok DM-2; the detected patterns
are highlighted. The size of the pattern as
a function of the number of detections are
displayed in Fig. 7(c), exemplary for the light
curve measured on May 19th. The detected
patterns of all four light curve of Blok DM-2
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Figure 17: Light curves with highlighted pattern of
the Gorizont 33 satellite 1990-102A (a) July 21st
and (b) July 26th. In (c), the size of the pattern as
a function of the number of detected occurrences in
the light curve of July 21st. (d) Patterns found in
all three light curves of Fig. 8 in one plot.
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are shown in Fig. 7. It was possible to detect
patterns in all four light curves, the size of
the pattern cover 16 to 17 data points of a
total of the order of 350 to 500 data points
the light covers consist of. The patterns are
not identical for all four light curves – the
magnitudes are not the same – which might
be due to observations under different phase
angles. The pattern is not found as often as
a check by eye would suggest, compared to
Fig. 7(a) and Fig. 7(b). That was due to the
fact, that the allowed deviations would have
to be enlarged to count more occurrences, but
this also leads to obvious mistagging.

Fig. 17 shows two of the light curves with
highlighted patterns of Gorizont 33 and the
dependence of the pattern size of the number of
detected occurrences. The size of the patterns
that could be detected in all light curves cover
16 to 27 data points. Although, here again,
the single patterns that could be found are
not identical, they clearly show a different
structure than for the upper stage Blok DM-2,
compared to Fig. 16(d) and Fig. 17(d). In both
cases, it has to be stated that the periods found
in the Fourier analysis are of the order of the
successful pattern detected in the light curves.

VII. Conclusions

Light curves of simple shapes under different
lighting, viewing conditions, and rotation
states have been simulated. The experience
gained there was used to be able to better
appraise the real light curve measurements and
their analysis.

All light curves, synthetic and observed,
were Fourier analyzed. The simulated light
curves showed that for the cylindrical shape
and the cube, the main periods reproduce
correctly the number of rotational axis and, for
the cases of two rotation axis, the relation of
the rotation periods. The periods of the Fourier
decomposition itself were – not unexpectedly
– found to be far off when the simulated

observation interval was only of the order of
the period itself, and close to the simulated
period up to a symmetry factor for analysis of
longer observation intervals. The analysis of
the simulated light curves indicated that the
Fourier analysis in the detection of the main
rotation periods is largely independent of the
phase angle as long as – as the MLI case seems
to indicate – the object is not invisible for large
parts of the observation interval.

The Fourier analysis of the real light curves
revealed no significant period for the spin-
stabilized satellite which only rotates around
its symmetry axis. For the upper stage and the
Gorizont satellite, two to three rotation periods
could be detected, which seem to be stable over
a couple of days and seem to be independent
of the phase angle under which the objects
are observed. Extremely small periods, of the
order of a few seconds only, have been detected.

A pattern recognition algorithm was de-
veloped and tested on the simulated light
curves. In all real light curves, patterns could
be detected. The patterns are not identical
for different light curves of the same object,
but are clearly different for the two different
objects compared to each other in the cases
regarded here. The size of pattern that could
be found is of the order of the rotation periods
detected in the Fourier analysis.
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